
DETECTION OF MICROORGANISMS
IN COMPLEX MICROSCOPY IMAGES1
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In this paper, we tackle the problem of finding microorganisms in bright field microscopy
images, which is an important step in various tasks. Apart from bacteria or fungi, these
images can contain impurities such as sand particles, which increases the difficulty of
microbe detection. Following a semantic segmentation approach, where a label is inferred
for each pixel, we achieve encouraging classification results on a database containing five
different types of microbes.

Introduction

In many applications and research stud-
ies, analyzing microorganisms in images from
bright field microscopes offers important in-
sights. To derive quantitative results, biological
researchers often put a lot of effort in labeling
and counting bacteria in those images, which
can be an exhausting task. This leads to only a
small number of images used for evaluation and
therefore to numbers which are doubtful from a
statistical point of view.

Previous work on bacteria detection and
cell segmentation has been done by Wu and
Shah [1], who utilize a pixel-wise Conditional
Random Field for binary cell segmentation
making use of colored fluorescence images and
an additional multi-spectral data source. In con-
trast, Gelas et al. [2] employ multi-phase level
set segmentation for 3D cell segmentation using
a Gaussian shape prior. Their main assumption
is an already existing, very accurate initial seg-
mentation provided by an expert. Seeded wa-
tershed transform is used by [3] for segmenting
and tracking cells. All of these previous works
assume that input images do not include impu-
rities, such as sand particles, which is often not
the case for real-world images (Fig. 1).

This work focuses on evaluating differ-
ent state-of-the-art semantic segmentation tech-
niques for the task of automatically detecting
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Fig. 1. Bright field microscopy image of yeast cells
including sand particles and suffering from non-
uniform illumination.

bacteria and other microbes. The benefit of
semantic segmentation approaches is the avail-
ability of a label for each pixel, instead of a
coarse labeling with a bounding box. Therefore,
we analyze pixel-based level set segmentation
and approaches based on segment classifica-
tion and present how to incorporate application-
specific prior knowledge such as shape informa-
tion to distinguish cells from sand particles.

Our experiments show that incorporating
shape and appearance analysis, as well as mod-
eling label dependencies between segments us-
ing Conditional Random Fields, substantially
reduces the false positive rate of our detection
scheme and gives more useful results compared
to a level set segmentation approach. This is es-



pecially useful for input images which include
a large number of outlier objects.

Segment Classification

The task of inferring a label for each pixel
in an image has been considered important in a
lot of different tasks, such as scene understand-
ing [4] and facade recognition [5]. In the fol-
lowing, we shortly outline a simplified variant
of [5], which is subsequently used for microbe
detection.

The first step is to obtain a segmentation of
the image. This can be done fully unsupervised
by employing some clustering algorithm such
as mean shift [6]. This is followed by a pixel-
wise classification on a predefined M ×M -grid
using a classifier previously learned on a train-
ing set. For each segment, a label can then
be inferred by averaging the classification re-
sults for all grid points falling inside of a seg-
ment. Since shape and appearance of microbes
play a crucial role in distinguishing them from
background, we include a post-processing step
which takes these properties into account. First
of all, segments are labeled as background if
they are too small (< 5 pixels) or too big (>
2000 pixels) in size. Secondly, shape and ap-
pearance features xi are extracted from the re-
maining segments and used for a rating in a sec-
ond classification stage. In our experiments, a
probabilistic Parzen classifier was used since it
allows for a fast leave-one-out estimation. To
obtain a hard decision, a segment i is classified
as microbe if the probability p(yi = 1 | xi) of
being microbe exceeds an automatically learned
threshold. We used the minimal leave-one-out
probability of all segments in the training im-
age for this purpose. To take into account a
possible over-segmentation of the image, neigh-
boring segments are greedily clustered as to in-
crease the segment likelihood of being microbe
based on shape and appearance features.

Incorporating Structure with Conditional
Random Fields

In order to globally take into account inter-
dependencies, the heuristic and greedy merg-
ing strategy from the last section is often in-
sufficient. However, it is often sensible to de-
viate from the common independence assump-
tion p(y |X) =

∏n
i=1 p(yi|xi) and to in-

clude dependencies between segments. This
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Fig. 2. Outline of our algorithm using segment clas-
sification and optional CRF optimization.

can be done using graphical models where
a graph G = (V,E) is designed to cap-
ture certain dependencies between random vari-
ables. While the nodes ν ∈ V represent
these random variables (segment labels), di-
rect dependencies between two variables are
described by edges e ∈ E. Conditional
Random Fields (CRFs) are a famous sub-
class of graphical models which allow us to
formulate dependencies between labels y =
(y1 . . . , yn)T given some image features X =
(x1, . . . ,xn)T . It is known that for such an
undirected dependency graph G, the joint prob-
ability of y factorizes w.r.t. maximal cliques c
in G, i.e. p(y |X) = Z−1

∏
c Ψc(yc |X) =

exp (
∑

c log Ψc(yc |X)− logZ). One way to
do inference with respect to labels y given ob-
servations X , is to perform maximum a pos-
teriori estimation. For sub-modular energies
log p(y |X), this can be efficiently done using
Graph-Cut [7]. A standard way is to specify
the log-potential functions log Ψc(yc |X) man-
ually and we refer to this method as Manual
CRF in our experiments.

Parameter Estimation for Log-linear CRFs

Manual specification of a CRF is a tricky task
and can lead to models that do not generalize
well on unseen images. An alternative is to lin-
early decompose the log-potential functions in a
parametric label term θ(yc) and a feature term
fc(X), i.e. log Ψc(yc |X) = θ(yc)

Tfc(X).
By doing this, parameters θ(yc) can be learned
in these log-linear CRFs by maximum likeli-
hood estimation. Since the log-partition func-
tion logZ depends on those newly introduced
parameters, the exact procedure is intractable
and one has to resort to approximate infer-
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Fig. 3. Average recognition rate achieved by all meth-
ods for each of the bacteria types.

ence techniques such as loopy belief propaga-
tion (LBP). Learned parameters can then be
used for inference, where again Graph-Cut can
be employed. However, instead of using MAP
estimation given an image X∗, we infer the
marginal probabilities p(y∗i = 1|X∗) of region
i belonging to a microbe, using LBP. A hard de-
cision can then be derived by thresholding those
marginals. In this work, the threshold is empir-
ically set to the 10th percentile of all marginal
probabilities inferred for the training segments
which corresponds to an assumed outlier ratio
of 10%.

Level Set Segmentation

Active contours are curves that minimize a
predefined energy functional which often con-
sists of a data term preferring strong image
edges and a regularization term favoring smooth
contours.Level sets as first proposed by Osher
and Sethian [8] can be understood as an exten-
sion to active contours, which can directly han-
dle complex morphology changes such as split-
ting and merging of object boundaries. We used
a binary Mumford-Shah model with Gaussian
intensity distribution and geodesic active con-
tour penalty. More details will not not be doc-
umented in this abstract for reasons of space.
For further information, we refer to [9]. As this
method is pixel-based, no pre-processing as in
previous sections can be performed.
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Fig. 4. Overlap ratio achieved by all methods for each
of the bacteria types.

Experiments

In the following, methods presented in previ-
ous sections are utilized for pixel-wise microbe
detection and evaluated on real-world images.

Performance Assessment We use a
database including 5 different microbe species
with 40 up to 470 microbes per class for
training and testing.

While the same parameters are used for
all microbe categories, recognition accuracy is
measured within those categories. As perfor-
mance measures, average recognition rate as
well as the overlap between inferred microbe
labeling and ground-truth microbe labeling are
used. In our setting, a single image is used
for training and another one for testing. To ar-
rive at the final results, all measures are aver-
aged over all possible combinations of training-
testing pairs within each category.

Implementation Details For semantic seg-
mentation as presented in the second section,
pixel-wise classification is done using a deci-
sion tree based Gaussian process classifier [10].
The resulting pseudo-likelihood on the segment
level is also used as unary potential of the man-
ual CRF, where pairwise potentials are propor-
tional to the average edge strength between two
neighboring segments. For the log-linear CRF,
gray values, thresholded intensity values, and
an integrity measure are used as input features
X . Inference was done with the UGM package
of Mark Schmidt [11].

Discussion of Results Final results are dis-
played in Fig. 3 and Fig. 4. It becomes apparent



Fig. 5. Segmentation result using (left) intensity-based segment classification [4] with post-processing; (center)
employing Graph-Cut based dependencies between segments; (right) and using a binary Mumford-Shah level set
segmentation with Gaussian intensity distribution and geodesic active contour penalty. Ground-truth regions
are filled with black color and the automatic results are shown by white contours.

that there is no method outperforming all other
ones for all measures and categories. However,
the fraction of false positives can be clearly
reduced when dependencies between segments
are taken into account. This can be also seen
in Fig. 5, where example results are visualized
for the microbe class E.coli. While the CRF-
based approach labels less segments wrongly as
bacteria, the level set approach leads to many
false positives. Since for the latter, predicted
microbe patches often include both classes, a
post-processing step is often counterproductive.
Thus, for applications that require a low number
of false positives, CRFs should be preferred.

Conclusions and Further Work

This paper focused on an in-depth analysis
and evaluation of several computer vision and
machine learning techniques applied to the task
of pixel-wise microbe detection. We compared
several semantic segmentation techniques such
as segment-based classification using Condi-
tional Random Fields and region-based level set
segmentation. In our opinion, the results of this
paper can serve as a good guideline to select
suitable algorithms for microbe segmentation
which allow for learning from specific datasets.

Future research will focus on studying active
learning methods to reduce the manual effort
needed to label training images. Another inter-
esting topic would be a comparison of differ-
ent approximation methods for parameter esti-
mation in Conditional Random Fields.
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