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Abstract. Detecting instances of unknown categories is an important
task for a multitude of problems such as object recognition, event detec-
tion, and defect localization. This paper investigates the use of Gaussian
process (GP) priors for this area of research. Focusing on the task of
one-class classification for visual object recognition, we analyze different
measures derived from GP regression and approximate GP classification.
Experiments are performed using a large set of categories and different
image kernel functions. Our findings show that the well-known Support
Vector Data Description is significantly outperformed by at least two
GP measures which indicates high potential of Gaussian processes for
one-class classification.

1 Introduction

Many applications have to deal with a large set of images from a single class
(positive examples) and only few or zero learning examples from a counter
class (negative examples). Learning a classifier in such situations is known as
one-class classification (OCC), novelty detection, outlier detection, or density
estimation. The latter concentrates on estimating a well-defined probability dis-
tribution from the data, whereas OCC is more related to binary classification
problems without the need for normalization.

Application scenarios often arise due to the difficulty of obtaining training
examples for rare cases, such as images of defects in defect localization tasks [1]
or image data from non-healthy patients in medical applications [2]. In these
cases, one-class classification (OCC) offers to describe the distribution of posi-
tive examples and to treat negative examples as outliers which can be detected
without explicitly learning their appearance. Another motivation to use OCC is
the difficulty of describing a background or counter class. This problem of find-
ing an appropriate unbiased set of representatives exists in the area of object
detection or content based image retrieval [3, 4].

Earlier work concentrates on density estimation with parametric generative
models such as single normal distributions or Gaussian mixture models [5]. These
methods often make assumptions about the nature of the underlying distri-
bution. Nowadays, kernel methods like one-class Support Vector Machines [6]
? The first two authors contributed equally to this paper.
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(also called 1-SVM) or the highly related Support Vector Data Description
(SVDD [7]), offer to circumvent such assumptions in the original space of fea-
ture vectors using the kernel trick. Those methods inherit provable generaliza-
tion properties from learning theory [6] and can handle even infinite dimensional
feature spaces.

In this paper we propose several approaches to OCC with Gaussian process
(GP) priors. Machine learning with GP priors allows to formulate kernel based
learning in a Bayesian framework [8] and has proven to be competitive with
SVM-based classifiers for binary and multi-class categorization of images [9].
Nevertheless, their use for OCC scenarios has mostly been studied in the case of
proper density estimation [10], which requires sophisticated MCMC techniques
to obtain a properly normalized density. Alternatively, Kim et al. [11] present a
clustering approach which indirectly uses a GP prior and the predictive variance.

Our new variants for OCC with GP priors include the idea of [11] as a special
case. We further investigate the suitability of approximate inference methods for
GP classification, such as Laplace approximation (LA) or expectation propaga-
tion (EP) [8]. We additionally show how to apply our GP-based and a common
SVM-based method to the task of object recognition by utilizing kernel functions
based on pyramid matching [12].

The remainder of the paper is structured as follows. First, we briefly review
classification with GP priors. Our approach to one-class classification with GP
is presented in Sect. 3. Section 4 describes Support Vector Data Description, a
baseline method used for comparison. Kernel-based OCC for visual object recog-
nition, as explained in Sect. 5, is utilized to evaluate and compare all methods
and their variants in Sect. 6. A summary of our findings and a discussion of
future research directions conclude the paper.

2 Classification via Gaussian Processes

This section gives a brief introduction to GP classification. Since classification is
motivated from non-parametric Bayesian regression, we first briefly introduce the
regression case with real-valued outputs y ∈ R, before we discuss approximate
methods for GP classification with binary labels y ∈ {−1, 1}.

2.1 The Regression Case

The regression problem aims at finding a mapping from input space X to output
space R using labeled training data X = [x1, . . . ,xn] ∈ Xn, y = [y1, . . . , yn]T ∈
Rn. In the following it is assumed that an output y is generated by a latent
function f : X → R and additive noise ε, i.e. y = f(x)+ε. Rather than restricting
f to a certain parametric family of functions, we only assume that the function is
drawn from a specific probability distribution p(f |X). This allows for a Bayesian
treatment of our problem, i.e. we infer the probability of output y∗ given a
new input x∗ and old observations X,y by integrating out the corresponding
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non-observed function values f∗ = f(x∗) and f = [f(x1), . . . , f(xn)]T :

p(y∗|X,y,x∗) =
∫
p(f∗|X,y,x∗) p(y∗|f∗) df∗ (1)

p(f∗|X,y,x∗) =
∫
p(f∗|X, f ,x∗) p(f |X,y) df (2)

The central assumption in GP regression is a GP prior over latent functions, i.e.
all function values are jointly normally distributed:

f |X ∼ N (m(X), κ(X,X)) (3)

This distribution is solely specified by the mean function m(·) and covariance
function κ(·, ·). If we further assume that the additive noise ε is modelled by a
zero-mean Gaussian distribution, i.e. p(y|f) = N (f, σ2

n), we are able to solve the
integrals in closed form. Using a zero-mean GP, the predictive distribution (2)
is again Gaussian [8] with moments

µ∗ = kT∗
(
K + σ2

nI
)−1

y (4)

σ2
∗ = k∗∗ − kT∗

(
K + σ2

nI
)−1

k∗ (5)

using abbreviations K = κ(X,X), k∗ = κ(X,x∗), and k∗∗ = κ(x∗,x∗). Since we
assume i.i.d. Gaussian noise, this also implies that (1) is normally distributed
with mean µ∗ and variance σ2

∗ + σ2
n.

2.2 From Regression to Classification

The goal in binary GP classification is to model a function which predicts a
confidence for each class y ∈ {−1, 1}, given a feature vector x. In order to make
probabilistic inference about the output given a training set, we can directly
apply the Bayesian formalism from eq. (1) and (2). However, the key problem is
that the assumption of Gaussian noise no longer holds, since the output space is
discrete. We could either ignore this issue and perform regression on our labels,
or we could use a more appropriate likelihood such as the cumulative Gaussian

p(y|f) =
1√
2π

∫ yf

−∞
exp

(
−1

2
x2

)
dx (6)

The disadvantage of the latter procedure is that our predictive distribution (2)
is no longer a normal distribution. To overcome this issue, we follow the stan-
dard approach to approximate the posterior p(f |X,y) with a normal distribu-
tion p̂(f |X,y). Two well-known approaches, which are also used in this work, are
Laplace approximation (LA) and Expectation Propagation (EP). The interested
reader is referred to [8].

For the final prediction step, approximations p̂(f |X,y) are used to solve (1).
Using both Gaussian approximations to the posterior (2) and cumulative Gaus-
sian likelihoods p(y|f), it can be shown that the predictive distribution (1) is
also equal to a cumulative Gaussian and can thus be evaluated in closed form [8].



4 Michael Kemmler, Erik Rodner, Joachim Denzler

−1 0 1 2 3 4
−0.5

0

0.5

1

1.5

x
*

Fig. 1. GP regression using a zero-mean GP prior in an one-dimensional OCC setting.
The predictive distribution is visualized via its mean and corresponding confidence
interval (scaled variances), where training points are marked as crosses.

3 One-Class Classification with Gaussian Process Priors

GP approaches from Sect. 2 are discriminative techniques to tackle the problem
of classification [8]. This follows from equation (1) where the conditional density
p(y∗|X,y,x∗) is modeled. Using discriminative classification techniques directly
for one-class classification is a non-trivial task, due to the fact that the density
of the input data is not taken into account.

Nevertheless, utilizing a properly chosen Gaussian process prior enables us
to derive useful membership scores for OCC. The main idea is to use a mean of
the prior with a smaller value than our positive class labels (e.g. y = 1), such as
a zero mean. This restricts the space of probable latent functions to functions
with values gradually decreasing when being far away from observed points. In
combination with choosing a smooth covariance function, an important subset
of latent functions is obtained which can be employed for OCC (c.f. Fig. 1).

This highlights that the predictive probability p(y∗ = 1|X,y,x∗) can be uti-
lized, in spite of being a discriminative model. Due to the fact that the predictive
probability is solely described by its first and second order moments, it is natu-
ral to also investigate the power of predictive mean and variance as alternative
membership scores. Their suitability is illustrated in Fig. 1: The mean decreases
for inputs distant from the training data and can be directly utilized as an OCC
measure. In contrast, the predictive variance σ2

∗ is increasing which suggests that
the negative variance value can serve as an alternative criterion for OCC. The
latter concept is used in the context of clustering by Kim et al. [11]. Additionally,
Kapoor et al. [9] propose the predictive mean divided by the standard devia-

Table 1. Different measures derived from the predictive distribution which are suitable
for OCC membership scores.

Mean (M) µ∗ = E(y∗|X,y,x∗) Probability (P) p(y∗ = 1|X,y,x∗)

neg. Variance (V) −σ2
∗ = −V(y∗|X,y,x∗) Heuristic (H) µ∗ · σ−1

∗
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Reg−P Reg−M Reg−V Reg−H

Fig. 2. One-class classification using GP regression (Reg) and measures listed in Ta-
ble 1. All measures capture the distribution quite well.

tion as a combined measure for describing the uncertainty of the estimation and
applied this heuristic successfully in the field of active learning.

All variants, which are summarized in Table 1, are available for GP regression
and approximate GP classification with Laplace approximation or Expectation
Propagation. The different membership scores produced by the proposed mea-
sures are visualized in Fig. 2 using an artificial two-dimensional example.

In the following sections we additionally motivate the use of the mean and
variance of GP regression by highlighting the strong relationship to Parzen es-
timation and normal density distributions respectively.

3.1 Predictive Mean Generalizes Parzen Estimators

There exist various techniques which aim at constructing a proper probabil-
ity density of observed data. Kernel density estimation, also known as Parzen
estimation, is one strategy to achieve this goal. This non-parametric method
constructs a probability density by superimposing similarity functions (kernels)
on observed data points. Our one-class classification approach using the mean
of GP regression has a tight relationship to Parzen estimators. If we assume
noise-free observations (σn = 0) and no correlations between training examples
(K = I), the regression mean (4) simplifies to

µ∗ = kT∗K−1y ∝ 1
n

n∑
j=1

n∑
i=1

[
K−1

]
ij
· κ(x∗,xi) =

1
n

n∑
i=1

κ(x∗,xi) (7)

Please note that by construction y = (1, . . . , 1)T . The proposed GP regression
mean can hence be seen as an unnormalized Parzen density estimation technique
using scaling matrix K, which is implicitly given by covariance function κ(·, ·).

3.2 Predictive Variance Models a Gaussian in Feature Space

One approach to describe the data is to estimate a normal distribution in feature
space H induced via a mapping Φ : X → H. It has been shown by Pȩkalska
et al. [13] that computing the variance term in GP regression is equal to the
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Mahalanobis distance (to the data mean in feature space) if the regularized
(σn > 0) kernel-induced scaling matrix Σ = Φ̃(X)Φ̃(X)T + σ2

nI is used:

Φ̃(x)TΣ−1Φ̃(x) ∝ κ̃(x,x)− κ̃(x,X)
(
κ̃(X,X) + σ2

nI
)−1

κ̃(X,x) (8)

where the tilde indicates operations on zero-mean normalized data, i.e. Φ̃(x) =
Φ(x) − n−1

∑n
i=1 Φ(xi) and κ̃(x,x′) = Φ̃(x)T Φ̃(x′). Since the GP variance ar-

gument from (5) does not utilize centered kernel matrices, we effectively use
the logarithm of the unnormalized zero-mean Gaussian which best describes the
data. For the case of constant κ(x,x), we are softly “slicing” a hyperellipsoid
from the data points which are distributed onto a sphere in feature space.

4 Support Vector Data Description as Baseline Method

In the following section, we present one-class classification with Support Vector
Data Description (SVDD) [14] which will be used for comparison due to its
common use for OCC applications.

The main idea of this approach is to estimate the smallest hypersphere given
by center c and radius R which encloses our training data X. This problem
can be tackled in various ways [15], but it is most conveniently expressed using
the quadratic programming framework [14]. In addition to assuming that all
training points reside within the hypersphere, one can also account for outliers
using a soft variant which allows some points xi to be a (squared) distance ξi
away from the hypersphere. Operating in feature space induced via a mapping
Φ : X → H to some Hilbert spaceH, this objective can be solved by the following
optimization problem:

min
c,R,ξ

R2 +
1
νn

∑
i∈I

ξi subject to ||Φ(xi)− c||22 ≤ R2 + ξi, ξi ≥ 0 (9)

for all i ∈ I := {1, . . . , n}. The parameter ν ∈ (0, 1] controls the impact that
hypersphere outliers have on the optimization objective, e.g. using small values
for ν leads to a strongly regularized objective and thus promotes solutions where
few data points lie outside the hypersphere. It should be noted that the Euclidean
distance in equation (9) can be generalized to a Bregmanian distances [16].

The primal problem can be transferred to the dual optimization problem
which is solely expressed in terms of inner products κ(x,x′) = Φ(x)TΦ(x′) and
thus enables the use of the kernel trick:

max
α

diag(K)Tα−αTKα (10)

subject to 0 ≤ αi ≤
1
νn

for i ∈ I and
n∑
i=1

αi = 1 (11)

where the center of the ball can be expressed as c =
∑n
i=1 αiΦ(xi) and the

squared radius is given by R2 = argmaxi||Φ(xi) − c||22 taking into account all
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indices i ∈ I satisfying 0 < αi <
1
νn . A newly observed point Φ(x∗) thus lies

within the hypersphere if ||Φ(x∗) − c||22 = αTKα − 2k∗Tα + k∗∗ ≤ R2 holds,
using abbreviations from Sect. 2.1.

It should be noted that there exists a tight relationship to Support Vector
Machines. It can be shown that for kernels satisfying κ(x,x) = const for all
x ∈ X , the SVDD problem is equal to finding the hyperplane which separates
the data from the origin with the largest margin (1-SVM [6]).

Other loss functions can also be integrated, e.g. quadratic loss instead of
hinge loss which leads to Least-Squares Support Vector Machines (LS-SVM,
[17]). It is interesting to note that LS-SVM with a zero bias term is equivalent
to using the predictive mean estimated by GP regression. Our extension to one-
class classification problems, therefore, directly corresponds to the work of Choi
et al. [18] in this special case.

5 One-Class Classification for Visual Object Recognition

Our evaluation of one-class classification with GP priors is based on binary image
categorization problems. In the following section we describe how to calculate
an image-based kernel function (image kernel) with color features. In addition
we also utilize the pyramid of oriented gradients (PHoG) kernel which is based
on grayscale images only [19].

Bag-of-Features and Efficient Clustering The Bag-of-Features (BoF) ap-
proach [12] has been developed in the last years to one of the state-of-the-art
feature extraction methods for image categorization problems [20]. Each image
is represented as a set of local features which are clustered during learning. This
clustering is utilized to compute histograms which can be used as single global
image descriptors.

We extract Opponent-SIFT local features [20] for each image by dense sam-
pling of feature points with a horizontal/vertical pixel spacing of 10 pixels. Clus-
tering is often done by applying k-Means to a small subset of local features. In
contrast, it was shown by Moosmann et al. [21] that a Random Forest can be
utilized as a very fast clustering technique. The set of local features is iteratively
split using mutual information and class labels. Finally, the leafs of the forest
represent clusters which can be utilized for BoF. We extend this technique to
cluster local features of a single class by selecting a completely random feature
and its median value in each inner node to perform randomized clustering.

Spatial Pyramid Matching Given global image descriptors, one could easily
apply kernel functions such as radial-basis function (RBF) or polynomial kernels.
The disadvantage of this method is that these kernels do not use the position
of local features as an additional cue for the presence of an object. The work of
Lazebnik et al. [12] shows that incorporating coarse, absolute spatial information
with the spatial pyramid matching kernel (S-PMK) is advantageous for image
categorization. To measure the similarity between two images with S-PMK, the
image is divided recursively into different cells (e.g. by applying a 2×2 grid). As
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Table 2. Mean AUC Performance of OCC methods, averaged over all 101 classes. Bold
font is used when all remaining measures are significantly outperformed. GP measures
significantly superior to SVDDν (with optimal ν) are denoted in italic font.

Reg-P Reg-M Reg-V Reg-H LA-P EP-P

PHoG 0.696 0.693 0.692 0.696 0.684 0.683

Color 0.761 0.736 0.766 0.755 0.748 0.747

LA-M EP-M LA-V EP-V SVDD0.5 SVDD0.9

PHoG 0.684 0.683 0.686 0.685 0.690 0.685

Color 0.745 0.744 0.758 0.757 0.739 0.746

in [12], BoF histograms are calculated using the local features in each cell and
combined with weighted histogram intersection kernels.

6 Experiments

In this section we analyze the proposed approach and its variants empirically
which results in the following main outcomes:

1. OCC with the variance criterion estimated by GP regression (Reg-V) is
significantly better than all other methods using the color image kernels and
it outperforms SVDD for various values of the outlier ratio ν (Sect. 6.1).

2. Approximate GP classification with LA and EP does not lead to a better
OCC performance (Sect. 6.1).

3. The performance of the mean of GP regression (Reg-M) varies dramatically
for different categories and can even decrease with an increasing amount of
training data (Sect. 6.2).

4. Parameterized image kernels offer additional performance boosts with the
disadvantage of additional parameter tuning (Sect. 6.3).

5. OCC with image kernels is able to learn the appearance of specific sub-
categories (Sect. 6.4).

We perform experiments with all 101 object categories of the Caltech 101 database
[22]. As performance measure we use the area under the ROC curve (AUC)
which is estimated by 50 random splits in training and testing data. In each case
a specific number of images from a selected object category is used for training.
Testing data consists of the remaining images from the category and all images
of the Caltech background category.

6.1 Evaluation of One-Class Classification Methods

To assess the OCC performance, we use 15 randomly chosen examples for train-
ing. Instead of performing a detailed analysis of each single category, we average
the AUC over all classes and random repetitions to yield a final performance
summary for each OCC method. Based on this performance assessment scheme,
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Fig. 3. Results for color feature based image kernels regarding classes Faces (Left) and
Leopards (Right) with varying number of training examples (using same legend).

we compare predictive probability (-P), mean (-M) and variance (-V) of GP
regression (Reg) and GP classification using Laplace Approximation (LA) or
Expectation Propagation (EP), respectively. We additionally analyze the heuris-
tic µ∗ · σ−1

∗ for GP regression (Reg-H) and compare with SVDD using outlier
fraction ν ∈ {0.1, 0.2, . . . , 0.9} (SVDDν). The results for PHoG and color fea-
tures are displayed in Table 2, which, for the sake of readability, lists only best
performing SVDD measures.

It can be immediately seen that PHoG features are significantly inferior to
color features. Therefore, experiments in subsequent sections only deal with
color-based image kernels. Although the average performance of all measures
are quite similar, SVDD is significantly outperformed for all tested ν (t-test,
p ≤ 0.025) by at least two GP measures. The method of choice for our task is GP
regression variance (Reg-V) which significantly outperforms all other methods
using color features. Employing PHoG based image kernels, Reg-V also achieves
at least comparable performance to SVDD for any tested parameter ν.

Our results also highlight that making inference with cumulative Gaussian
likelihoods does not generally improve OCC, since LA and EP are consistently
outperformed by GP regression measures Reg-V and Reg-P. Hence, the proposed
OCC measures do not benefit from the noise model of (6) (and corresponding
approximations) that are more suitable for classification in a theoretical sense.

6.2 Performance with an Increasing Number of Training Examples

To obtain an asymptotic performance behavior of all outlier detection methods,
we repeat the experiments of Sect. 6.1 with a densely varying number of training
examples. As can be seen in Fig. 3, the performance behavior highly depends on
the class. Classifying Faces, the performance increases with a higher number of
training examples in almost all cases. A totally different behavior, however, is
observed for Leopards, where the averaged AUCs of Reg-M (and related Reg-P
and Reg-H) substantially decrease when more than 8 training examples are used.
For small ν, SVDD also exhibits this behavior in our experiments.
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Fig. 4. Influence of an additional smoothness parameter β of a re-parameterized image
kernel on the OCC performance for the categories Faces (Left) and Leopards (Right).

6.3 Influence of an Additional Smoothness Parameter

Estimating the correct smoothness of the predicted distribution is one of the ma-
jor problems in one-class classification and density estimation. This smoothness
is often controlled by a parameterized kernel, such as a RBF kernel. In contrast,
our used kernel functions are not parameterized and the decreasing performance
of the Reg-M method in the last experiment might be due to this inflexibility.

For further investigation, we parameterize our image kernel function by trans-
forming it into a metric, which is then plugged into a distance substitution
kernel [23]: κβ(x,x′) = exp (−β (κ(x,x)− 2κ(x,x′) + κ(x′,x′))). We perform
experiments with κβ utilizing 100 training examples and a varying value of β.
The results for the categories Faces and Leopards are plotted in Fig. 4.

Let us first have a look on the right plot and the results for Leopards. With
a small value of β, the performance is comparable to the unparameterized ver-
sion (cf. Fig. 3, right side). However, by increasing the parameter we achieve
a performance above 0.9 and superior to other methods, such as Reg-V. This
behavior differs significantly from the influence of β on the performance of the
task Faces, which decreases after a small maximum. Right after the displayed
points, we ran into severe numerical problems in both settings due to small ker-
nel values below double precision. We expect a similar gain in performance by
tuning the scale parameter of the cumulative Gaussian noise model, but we skip
this investigation to future research. This analysis shows that introducing an
additional smoothness hyperparameter offers a great potential, though efficient
optimization using the training set is yet unsolved.

6.4 Qualitative Evaluation

Instead of separating a specific category from the provided background images
of the Caltech database, we also apply our OCC methods to the difficult task of
estimating a membership score of a specific sub-category. We therefore trained
our GP methods and SVDD using 30 images of a type of chair called windsor
chair, which has a characteristic wooden backrest. The performance is tested
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Fig. 5. Results obtained by training different OCC methods for windsor chair and
separating against chair : the three best ranked images (all of them are characteristic
windsor chairs) and the three last ranked images with corresponding output values.

on all remaining windsor chairs and images of the category chairs. Results are
illustrated in Fig. 5 with the best and last ranked images. The qualitative results
are similar, but the AUC values clearly show that Reg-V is superior.

7 Conclusions and Further Work

We present an approach for one-class classification (OCC) with Gaussian process
(GP) priors and studied the suitability of different measures, such as mean and
variance of the predictive distribution. The GP framework allows to use differ-
ent approximation methods to handle the underlying classification problem such
as regression, Laplace approximation and Expectation Propagation. All aspects
are compared against the popular Support Vector Data Description (SVDD)
approach of Tax and Duin [14] in a visual object recognition application using
state-of-the-art image-kernels [12, 19]. It turns out that using the predictive vari-
ance of GP regression is the method of choice and, compared to SVDD, achieves
significantly better results for object recognition tasks with color features. Using
the estimated mean frequently leads to good results, but highly depends on the
given classification task.

We also show that the introduction of an additional smoothness parameter
can lead to a large performance gain. Thus, estimating correct hyperparameters
of the re-parameterized kernel function would be an interesting topic for future
research. Another idea worth investigating is the use of specifically tailored noise
models for OCC. In general, our new approach to OCC is not restricted to
object recognition and its application to tasks such as defect localization would
be interesting.
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