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Abstract. Automatic categorization of microorganisms is a complex
task which requires advanced techniques to achieve accurate performance.
In this paper, we aim at identifying microorganisms based on Raman
spectroscopy. Empirical studies over the last years show that powerful
machine learning methods such as Support Vector Machines (SVMs) are
suitable for this task. Our work focuses on the Gaussian process (GP)
classifier which is new to this field, provides fully probabilistic outputs
and allows for efficient hyperparameter optimization. We also investigate
the incorporation of prior knowledge regarding possible signal variations
where known concepts from invariant kernel theory are transferred to the
GP framework. In order to validate the suitability of the GP classifier,
a comparison with state-of-the-art learners is conducted on a large-scale
Raman spectra dataset, showing that the GP classifier significantly out-
performs all other tested classifiers including SVM. Our results further
show that incorporating prior knowledge leads to a significant perfor-
mance gain when small amounts of training data are used.

1 Introduction

In the fast-growing field of medical and biological science, the need for classi-
fying microorganisms is rapidly increasing. There are many crucial tasks which
demand an accurate classification method, such as the categorization of po-
tentially pathogenic particles in clinical applications [1] or the identification of
contamination conditions in clean room environments [2], to name just a few.
The assortment of tools available for identifying microbes is broad, ranging from
microscopic inspection [3] to advanced biochemical analysis [4]. Though, while
the classification based on microscopic means using morphological information is
only possible on a coarse level, most accurate biochemical methods require time
consuming pre-processing steps for cultivating the media of interest. So-called
”vibrational techniques“ such as Raman spectroscopy offer an elegant way out
of this dilemma by obtaining a ”molecular fingerprint“ of biological samples [2].

This work aims at introducing the Gaussian Process classifier to the field
of vibrational spectroscopy. Although GP regression is well-known for the cal-
ibration of spectroscopic data [5], GP classification is, to our knowledge, new
to the field of Raman spectroscopy. Moreover, we investigate the use of a-priori
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Fig. 1. Illustration of (pre-processed) Raman spectra and signal variations.

knowledge by means of possible variations of Raman spectra, where we apply
the approach of Peschke et al. [6] to the GP framework. Shortcomings of this
approach as well as heuristics to overcome those issues are discussed.

This paper is organized as follows. In Sect. 2 we give a brief summary to Ra-
man spectroscopy. Sect. 3 gives an introduction to GP classification. In Sect. 4 we
formulate the notion of transformation invariant kernels and show how a-priori
knowledge can be incorporated in the GP framework. In Sect. 5 we empirically
demonstrate the performance of the GP classifier for Raman spectra categoriza-
tion compared to other state-of-the-art classification techniques and investigate
the effect of prior knowledge. Finally, we conclude and summarize our findings.

2 Classification of Raman Spectra

Raman spectroscopy is an optical technique for measuring the vibration of
molecules. The sample under focus is irradiated with a narrow-band LASER
and the scattered light is analyzed. Since shifts in wavenumber are strongly
related to the vibrational state of molecules and shifts from all molecules are su-
perimposed, we obtain a molecular fingerprint of the whole sample (c.f. Fig. 1).
Since most microorganisms substantially differ in molecular decomposition it is
assumed that they can be distinguished by means of their vibrational signature.
Empirical results validate [2] that Raman spectra contain discriminative infor-
mation and are suitable for categorization of even very similar microorganisms.

However, one major drawback is the occurrence of prominent background sig-
nals introduced by other optical phenomena such as fluorescence. One common
technique to overcome this issue is to explicitly pre-process all spectra prior to
training and learning. Alternatively, Peschke et al. [6] successfully apply an in-
variant kernel approach which implicitly incorporates possible background varia-
tions into the kernel for SVM and k-Nearest-Neighbor classification. In addition
to assessing the suitability of the GP classifier to the field of Raman spectroscopy,
this work aims at transferring the approach of [6] to the GP framework.
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3 Gaussian Process Classification

This section gives a brief introduction to GP classification. Since the classification
is motivated from non-parametric Bayesian regression, we first briefly introduce
the regression case before we discuss the GP classifier.

3.1 The Regression Case

The regression problem aims at finding a mapping from input space X to output
space R using labeled training data X = [x1, . . . ,xn] ∈ Xn, y = [y1, . . . , yn]T ∈
Rn. In the following it is assumed that the output is generated by a latent (non-
observed) function f : X → R and an additive noise term ε, i.e. y = f(x) + ε.
Rather than restricting f to a certain functional family, we only assume that the
function is drawn from a specific probability distribution p(f |X). This allows for
a Bayesian treatment of our problem, i.e. we infer the probability of outputs
y∗ given new inputs x∗ and old observations X,y by integrating out the non-
observed function values f∗ and f :

p(y∗|X,y,x∗) =
∫

p(f∗|X,y,x∗) p(y∗|f∗) df∗ (1)

p(f∗|X,y,x∗) =
∫

p(f∗|X, f ,x∗) p(f |X,y) df . (2)

The central assumption in GP regression is that all function values are jointly
normally distributed, i.e. f |X ∼ N (m(X), κ(X,X)). This distribution is solely
specified by the mean function m(·) and covariance function κ(·, ·). When we
additionally assume that the data is generated by zero mean independent Gaus-
sian noise, i.e. y ∼ N (f, σ2

n), then we are able to solve the integrals in closed
form. Using a zero mean GP, the predictive distribution (2) is again Gaussian
with predictive mean µ∗ = kT

∗
(
K + σ2

nI
)−1

y and predictive variance σ2
∗ =

k∗∗ − kT
∗

(
K + σ2

nI
)−1

k∗ using shortcuts K = κ(X,X), k∗ = κ(X,x∗), and
k∗∗ = κ(x∗,x∗) and hence also implies that (1) is Gaussian.

3.2 From Regression to Classification

The goal in binary GP classification is to model a function which predicts a
confidence for each class y ∈ {−1, 1}, given a feature vector x. In order to
make probabilistic inference about the output given a training set, we can di-
rectly apply the Bayesian formalism from equation (1) and (2). However, the
key problem is that the assumption of Gaussian noise no longer holds since the
output space is discrete. We could either ignore this issue and perform regres-
sion on our labels or we could use a more appropriate assumption of p(y|f).
Here we follow the latter approach using the cumulative Gaussian likelihood
p(y|f) = (2π)−

1
2

∫ yf

−∞ exp
(
−0.5x2

)
dx. The disadvantage of this procedure is

that our predictive distribution (2) no longer is a normal distribution. To over-
come this issue, we follow the standard approach to approximate [7] the posterior
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p(f |X,y) with a normal distribution p̂. We use Laplace’s Method, i.e. the mean
of p̂ is set equal to the mode of p(f |X,y) and the Hessian of − log p(f |X,y) is
utilized as covariance matrix of p̂. Moreover, by using the cumulative Gaussian
as described above, equation (1) also turns out to be a cumulative Gaussian [8]
and hence can be efficiently computed. Finally, appropriate hyperparameters θ∗

of the covariance function can be efficiently found by marginal likelihood maxi-
mization, i.e. θ∗ = argmaxθp(y|X, θ).

4 Prior Knowledge in GP Classification

As has been pointed out in Sect. 2, Raman spectra often contain undesirable
information introduced by fluorescence or different measuring conditions. The
resulting signal variations often pose a problem for most classifiers. This is es-
pecially the case in real scenarios where only small amounts of training data are
available, since the possible variations are not sufficiently covered by the train-
ing set. One way to overcome this issue is to implicitly embed knowledge about
possible signal variations into the learning algorithm. In this section we discuss
how and to which extent this kind of prior information can be incorporated into
the GP framework by means of Tangent Distance Substitution Kernels [9].

4.1 Tangent Distance Substitution Kernels

Many methods in machine learning are solely expressed via symmetric similarity
functions κ, so-called kernels. These kernels κ(x,x′) are often positive definite
in which case they can be interpreted as inner products κ(x,x′) = Φ(x)T Φ(x′)
in some feature space Y induced by a mapping Φ : X → Y. Many kernels used
throughout the literature are also expressed in terms of Euclidean distances d.
One possibility to introduce some degree of invariance into kernels is to replace
Euclidean distances with distances that are invariant with respect to pattern
variations. When specified beforehand, knowledge about expected pattern vari-
ations is thus some kind of prior information which can be incorporated into
distances. In the following we use the regularized Mean Tangent Distance [9]
TDMNγ which results in a locally invariant distance measure:

TDMN2
γ(x,x′) =

1
2

(
TD1S2

γ(x,x′) + TD1S2
γ(x′,x)

)
(3)

TD1S2
γ(x,x′) = min

p
||x + Txp− x′||22 + γ||p||22 , (4)

where TD1Sγ denotes the one-sided Tangent distance using regularization pa-
rameter γ. The latter Tangent distance computes the distance between x′ and
the first order approximation Tx of the variation manifold in which x resides
(see Fig. 2). As detailed in [9], Tangent distances can be used in any possible
distance-based kernel. In this paper, however, we will solely focus on the squared
exponential (SE) kernel [8] with respect to some distance d:

κν1,ν2(x,x′) = ν2
1 exp

(
−d2(x,x′)

2ν2
2

)
. (5)
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Fig. 2. Visualization of Tangent distance. Dotted red: Pattern variation manifold with
respect to x. Dashed blue: Tangent Tx of variation manifold with respect to x. Solid
green: Unregularized one-sided Tangent distance TD1S0(x,x′).

4.2 Invariant Kernels in GP Classification

GP methods can be related to kernel machines through their covariance function
κ which describes the underlying similarity structure. One can therefore utilize
invariant kernels such as (5) with d = TDMNγ as a covariance function. By
doing so, however, the theoretical assumptions behind the GP framework might
be violated. This is due to the fact that the Tangent distance is not necessarily
a metric distance. It can be shown [9] that in this case the above kernel is not
positive definite and hence no valid covariance function for a GP.

To overcome this issue one could explicitly enforce positive definiteness. This
is possible, e.g. by clipping off negative eigenvalues (CLIP), flipping negative
values to its positive absolute value (ABS) or by adding a constant c ≥ |λmin| to
all eigenvalues (SHIFT), where λmin is the smallest algebraic eigenvalue of the
kernel matrix. While the latter technique can be efficiently realized by Krylov
subspace methods such as Lanczos algorithms, CLIP and ABS require a full
eigendecomposition of the covariance matrix of the entire data.

To guarantee positive definiteness, one could also reduce the set of possi-
ble tangents. It can be shown [9] that by using tangents which are constant,
i.e. independent of the input arguments x, the Tangent distance is equal to a
Mahalanobis distance which leads to positive (semi-)definite SE-kernels.

We could also ignore the indefiniteness of the covariance function. One result
would be that variances might get negative. In order to construct a Gaussian dis-
tribution in the end, one could use heuristics to ensure positivity of the variance
term, e.g. by setting negative values to zero (negative variance cut-off heuristic).

Although the Bayesian perspective gets lost using the latter approach, we can
take a different view on the outcome. In GP regression, the moments µ∗ and σ2

∗ of
predictive Gaussian p(f∗|X, f ,x∗) can be also derived from linear estimation [10]
in some indefinite inner product (Krĕın) space K, where the predictive mean
µ∗ = w∗

T y is some linear projection onto the training set y (which is equal to
the linear Least Squares estimate if the data can be exactly explained by our
prior belief κ, i.e. EyyT = K+ σ2

nI), and σ2
∗ is equal to the reconstruction error

for w∗. Using the Laplace Approximation, a similar relationship holds using a
slightly modified set of latent function values. From this perspective, cutting off
negative variances means that we are confident (σ2

∗ = 0) for estimates µ∗ in some
regions of K that will result in negative goodness-of-fit values σ2

∗.
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5 Experiments and Results

In the following experiments we used a large Raman dataset consisting of 6707
spectra comprising 4 different genera (classes) and 10 species (sub-classes) which
was captured over a period of 3 years. Due to the physics of the recording
process, each spectrum exhibits a potentially different set of wavenumber shifts.
We therefore crop the interesting region to the interval I = [540cm−1, 3350cm−1]
that is shared among all samples. In order to work with fixed dimensions, we use
quadratic interpolation to obtain the Raman intensity with respect to all integer
wavenumbers ω ∈ I ∩ Z. In order to eliminate spike noise artifacts introduced
by cosmic radiation, a running median (of size 21) is applied. For the sake of
numerical stability, all spectra are either normalized to unit length or multiplied
by a fixed constant c = 8.5741 × 10−5. In all experiments we used the (noise-
free) GP classifier from Sect. 3.2 with kernel (5) whose parameters are tuned
with marginal likelihood maximization (starting at ν = (1, 1)T , 10 iterations).
To allow for multiple classes, a one-vs-all scheme based on predictive probabilities
(1) is employed.

In this section, we will empirically validate the following hypotheses:

1. The GP classifier is suitable for classification of Raman spectra (Sect. 5.1).
2. For small training sets, a significant performance gain is achieved by incor-

porating prior information (Sect. 5.2).
3. A special treatment of indefinite kernels is not necessary for our task (Sect. 5.2).

5.1 Suitability for Raman Spectroscopic Categorization

In order to investigate whether the GP classifier is suitable for the categoriza-
tion of Raman spectra, we compared it to four state-of-the-art classifiers: k-
Nearest-Neighbor classifier (KNN), Randomized Decision Forests (RDF) and
AdaBoost.MH [11] (ADA) with decision stumps, as well as Support Vector Ma-
chines [12] (SVM), where for the latter logistic regression is used to generate
pseudo-probabilistic outputs. Particularly, we used KNN with k = 1 (best per-
formance for this value of k), a gently randomized RDF (95% resampling proba-
bility, 250 random features per node) with 100 trees, and a SVM with rbf-kernel
whose parameters were determined via leave-one-out (LOO) estimates on a 2x10
grid for trade-off parameter and bandwidth parameter.

It should be noted that results concerning the novel large dataset used in this
work are not directly comparable to other work (e.g. [2]) since other datasets
strongly differ in size and complexity and are generally not publicly available. An
indirect comparison, however, is possible since we compare against SVM which
is known to achieve very good results in the field of Raman spectroscopy [2].
Moreover, since fast LOO error estimates cannot be computed for all classifiers,
we randomly chose 75% of the data for training and the remainder for testing. In
order to yield a more robust performance estimate we repeated this procedure
ten times.

The resulting ten average recognition rates for each classifier are illustrated
in Fig. 3 where results for the genus level (4 classes) and species level (10 classes)
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Fig. 3. Average recognition rates on the genus level (4 classes) and species level (10
classes) using ten repetitions with 75% of the data randomly chosen for training and
the remainder for testing.

are given via Boxplots. They clearly show that the GP classifier (GPC) is suitable
for our setting and provides significantly higher average recognition rates than
the gold standard SVM (verified using t-test, p < 0.05). Please also note that
all experiments were conducted with unit length normalized spectra, however,
multiplication with a fixed constant yields analogous results in this setting.

5.2 Benefit of Prior Information

In the following we analyze different techniques from Sect. 4.2 to incorporate
prior knowledge into the GP framework.

Negative Variance Cut-Off Heuristic To evaluate the effect of prior knowl-
edge we analyzed a different scenario, where only 10 spectra per class are utilized
for training. We tested our GP classifier on the remaining spectra for different
values of the crucial regularization parameter γ for both types of normalization.
Instead of ten repetitions of the randomized partitioning scheme we performed
one hundred trials. As in [6], we utilized the Tangent distance which is invariant
to global scaling of spectra and slowly varying background signals which are
modeled by a linear combination of Lagrange bases of degree deg = 3. Since the
assumed variations are both linear in the parameters, the Tangent distance is no
approximation but calculates the mean of exact (regularized) distances between
variation manifolds and patterns (see Fig. 2).

From Fig. 4 we clearly see that we observe different behavior when different
kinds of normalization are employed. Using the standard Euclidean kernel, the
unit length normalization (unit) yields substantially better performances com-
pared to raw features (raw) multiplied with normalization constant c. When
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Fig. 4. Euclidean versus TDMNγ-induced squared exponential kernel for different val-
ues of regularization parameter γ ∈ {0.1, 1, 10, 102, 103, 104} and different normaliza-
tions (unit, raw). Labels containing a number correspond to invariant kernels, e.g. raw-
10ˆ3 corresponds to the kernel using raw data and regularization parameter γ = 103.

using invariant kernels with negative variance cut-off heuristic, however, the re-
sults turn out to be completely different. In case of unit length normalization,
we only observe marginal improvements. This can be explained by the fact that
we are applying an extra transformation to the spectra prior to using the invari-
ant kernel. While the unit length transformation already provides a certain kind
of scaling invariance, it simultaneously hinders the use of the transformation
invariance that is embedded in the GP prior.

When using raw spectra, however, we observe a significantly higher perfor-
mance gain compared to the Euclidean kernel (30.4% versus 46.8% on average).
Moreover, using this normalization type leads to significantly higher average
recognition rates than using unit length normalized data (3.5% for γ = 102).

It should be further noted that the benefit of using prior knowledge gets lost
when using large amounts of training data, e.g. we even observed a performance
drop of 2.5% compared to the non-invariant case when using 75% of the entire
dataset for training.

Constant Tangents We already discussed in Sect. 4.2 that Tangent distance
with constant tangents leads to positive semi-definite SE-Kernels. Since the La-
grange bases used in our approach are independent of the Raman spectra, we
obtain overall constant tangents by discarding the non-constant scaling tangent.
To evaluate this approach which does not need any heuristics or approximation,
we repeated the above experiments and still observed a substantial performance
gain over the Euclidean kernel (30.4% versus 47.8% on average for raw spectra).
Compared to the negative variance cut-off heuristic, the results are nearly the
same. Therefore and due to space limitations, we omit further results regarding
this experiment.
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Fig. 5. Standard GP approach (unit, raw) and invariant GP heuristic (raw-tdmn)
versus positive definite approximation methods (raw-shift, raw-clip, raw-flip).

Positive Definite Approximations As has been discussed in Sect. 4.2, the use
of positive definite approximations is computationally prohibitive. We therefore
adapted our experimental setting to accommodate for this fact. We randomly
selected a fraction of 50 spectra for each category and trained the classifier
with ten randomly chosen data points per category. Each such fraction was
measured ten times. In order to obtain a measure for the entire dataset, this
whole procedure was repeated 25 times. We thus ended up with a collection of
10 × 25 averaged recognition rates per classifier. We can see from Fig. 5 that
no approximation substantially improved the invariant GP classifier (raw-tdmn)
though non-positive eigenvalues occurred. Moreover, we can see that the rather
fast SHIFT transform is even counterproductive, leading to a slightly decreased
averaged performance (3%). The behavior of the SHIFT transform is even worse
in large-scale training sets. E.g. when 75% of the data is used for training, we
observe a performance drop of 55.8% compared to Euclidean kernels. This seems
to be an inherent problem of this approximation method, as similar performances
are reported for SVMs [13].

6 Conclusion and Future Work

This paper tackles the problem of Raman spectroscopic identification of microor-
ganisms and introduces the Gaussian Process classifier to this field. In addition
to the standard GP classifier we investigate the use of partially invariant co-
variance functions, where we embed known ideas from invariant kernel theory
into the Gaussian Process framework. We highlight the shortcomings of this
approach, i.e. that general GP classifiers are not able to cope with indefinite
covariance matrices, and investigate methods to circumvent this issue. Empiri-
cal results show that the GP classifier outperforms state-of-the-art methods on a



10 Michael Kemmler, Joachim Denzler, Petra Rösch, Jürgen Popp

large Raman dataset. Moreover, for the case of few training samples a significant
performance gain is achieved via Tangent distance based covariance functions in-
corporating prior knowledge from possible pattern variations. Our results show
that investigating invariant GP methods can indeed be beneficial. It would be
further interesting to transfer our approach to other applications and to high-
light relationships and empirically compare our work to other indefinite kernel
methods.
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