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Abstract: 3D reconstruction applications can benefit greatly from knowledge about coplanar feature points. Extracting
this knowledge from images alone is a difficult task, however. The typical approach to this problem is to search
for homographies in a set of point correspondences using the RANSAC algorithm. In this work we focus on
two open issues with a blind random search. First, we enforce the detected planes to represent physically

present scene planes. Second, we propose methods to identify cases, in which a homography does not imply

coplanarity of feature points. Experiments are performed to show applicability of the presented plane detection
algorithms to handheld image sequences.

1 INTRODUCTION 2006). While the mentioned works purely rely on a
sparse set of correspondences, other, computationally
Planar structures are abundant in man-made environ-more intensive methods concentrate on an accurate
ments and impose strong geometric constraints for theSégmentation and delineation of the planes using re-
points on them. They have caught the interest of re- 9ion growing algorithms and dense matching (Fraun-
search before, and a typical application is the repre- dorfer et al., 2006). Our work is settled among the
sentation of video data as independent layers (Bakerfast, actually real-time algorithms using only sparse
et al., 1998; Odone et al., 2002) or the interpretation correspondences. The addressed problems, however,
of 3D scene structure (Gorges et al., 2004). Also, for are inherent to the usage of homographies in general,
geometric reconstruction tasks, planar structures playindependent of the method actually used.
an important role. E.g. incorporation of the copla- While a homography might cover coplanarity in
narity constraints into a point based reconstruction al- a geometrical sense, the actually interesting, phys-
gorithm has been explored (Bartoli and Sturm, 2003) ically present scene planes are only a small subset
and computing 3D planes from 2D homographies is of all possibly coplanar point sets. A blind search
possible (Rother, 2003). To benefit from coplanarity as in RANSAC will therefore detect spurious, “vir-
in 3D reconstruction, it is necessary to detect the pla- tual” planes, which was also recognized in previous
nar structures from 2D information alone. research (Gorges et al., 2004). We present a more rig-
A central concept for the identification of copla- Orous analysis of the problem in section 3, leading to
nar features in image sequences is the plane inducec? theoretically justified side condition in plane search.
homography (Baker et al., 1998). Planar regions are  Although the homography is a necessary criterion
mapped from one image of the sequence to another byfor planar regions, it is not a sufficient one gKler
a 2D-2D projective mapping, also called collineation and Denzler, 2006). To give a very simple example,
or homography. This key idea has been used beforeall points are mapped by a common homography, the
to search for dominant homographies in a set of point identity, between two images of a static camera. Yet
correspondences using random sampling consensusot all the points need to be on one plane. Copla-
and related techniques (Odone et al., 2002; Lourakis narity of points can only be detected, if the optical
et al., 2002; Gorges et al., 2004aHKler and Denzler,  center has moved between two images. As cases with



a static or a purely rotating camera are abundant in2.2  Iterative Dominant Homography
handheld image sequences, zero camera translations
have to be identified automatically and a detection of It is straight forward to extend this in order to get a
false planes has to be prevented then. In section 4,decomposition of all the observed point correspon-
we outline the analysis of @hler and Denzler, 2006) dences into several homographies, or a decomposi-
and extend it by model selection criteria (Torr et al., tion of the set of points into planes. Once a domi-
1999). An experimental performance evaluation and nant homography is found, the points supporting it are
comparison of the approaches is provided in section 5. removed and another dominant homography is com-
puted for the remaining points. This is iterated until
no more homographies can be established.

2 DETECTING PLANES

To detect planar regions in an image sequence, at3 PLANES TO AVOID
first point correspondences are established between
two images of the sequence. In this work, we use Up to now, a blind search is employed to detect all
KLT-tracking (Shi and Tomasi, 1994), which seems kinds of coplanar points. This can not be enough to
appropriate for e.g. 30 frames/sec and typical mo- identify physically present scene planes, as is shown
tion speeds of handheld cameras. For plane detectionjn figure 1. “Virtual” planes are detected there. These
we analyze the motion of the points between two, not do actually consist of coplanar points, but the geomet-
necessarily successive frames. ric plane containing the points does not correspond to
The key idea for detection of coplanarity thenisto any physical plane in the scene. With the purely ge-
find homographies. Itis well known that planar scene ometric definition of coplanarity used so far, it is not
areas observed in two different views with a perspec- possible to distinguish “virtual” planes from physical
tive camera are related to each other by a homogra-scene planes.
phy. Hence we can define the task of detecting a pla-  On first sight, the points on virtual planes seem
nar patch as finding “a set of points thatriansferred  to be distributed along two lines, as in figure 1. But

between two images by a common homogréphy as the virtual plane intersects a third or fourth physi-
cal scene plane, a third or fourth line distribution will
2.1 Basic RANSAC result. On a closer look, the physical planes we are in-

terested in are contiguous 2D entities in 3D space, and

In the task of finding planes, it is intuitive to take as such they are mapped to contiguous 2D areas in the
care of points off the plane. If finding the plane in- observed images. The definition of a planar patch is
duced homography is considered an estimation prob-hence extended to “a set of poiritsa closed region
lem, the points off the plane are outliers and meth- that is transferred between two images by a common
ods of robust estimation can be applied. In particu- homography”. This enforces validity of the homogra-
lar the RANSAC approach seems to be the method of phy for the whole closed region, and not only at some
choice for this problem, and it was also used in previ- Of its outlines.
ous works (Gorges et al., 2004; Lourakis et al., 2002).  Various strategies can be used to implement this

The RANSAC approach generates hypotheses bydefinition algorithmically. Constructing a dense set
selecting a minimum number of random points, such of matches while using region growing might be one
that a homography can be estimated. These are typi-solution (Fraundorfer et al., 2006). The closed re-
cally four points with no three of them being collinear. gion constraint is then directly enforced by the re-
Approaches with three points are possible, but re-
quire additional constraints like known epipolar ge-
ometry (Lourakis et al., 2002) and are not used here.

Once the homography induced by the hypothe-
sis is computed, the point correspondences supporting —
this hypothesis can be counted. The supporting points
are those correctly transferred by the homography up
to e.g. 2 pixels accuracy. Many hypotheses are gener
ated and in the end the homography supported by the
largest number of point correspondences is kept. This
is called thedominanthomography or plane (Odone  Figure 1: Detection of a “virtual” plane, that contains copla-
et al., 2002; Gorges et al., 2004). nar points but does not correspond to any physical plane




gion growing algorithm. Working only on a sparse

In the simplest case, the intrinsic camera matrices

set of correspondences, the problem was approache& ; andK; are known. The matrikl’ then expresses

by picking the four seed points of RANSAC in a local
neighborhood (Gorges et al., 2004). Thus it is likely
to compute the homography of a physical plane, and
that all other points conforming the homography are
on the same physical plane.

The idea used in this work is to pick all point cor-
respondences in a closed area of the image as see
points. This is achieved by starting from one random
point and then iteratively adding the closest known
point correspondences, until a homography can be
computed. Approaching a dense set of correspon-

the homography in camera coordinates:
1
H =K;MHK1=a(R+ atnT)

If and only ift =0 orn = 0, H' is a scaled rotation ma-
trix aR, and all singular values ¢f’ are equal. Test-
#ng for a translational part ikl can hence be achieved
by computing the ratio of largest to smallest singular
value ofH’, which will be 1 fort = 0.

Frequently the intrinsic camera parameters are un-
known, but known to be constant. In such cases a

dences, it is more and more certain that the detectegslightly different analysis oH can be used. The ma-

planes correspond to physical scene planes.

4 NO CAMERA TRANSLATION

The use of homographies introduces another problem
to plane detection. Homographies are a necessary cri
terion for coplanarity, but not a sufficient one. In case
of a camera rotation or zoom without a translation of
the optical center, no information on coplanarity can
be inferred. This can also be derived from the follow-
ing standard decomposition of a homograjpty
R+ %tnT (1)
whereK ; andK , are the intrinsic camera matriceés,
andt are the relative motion andandd are the plane
normal its distance from the origin.

If and only ift = O, a difference in plane normals
n does not influence the homograpRy We hence
extend the definition of a planar patch to “a set of
points in a closed region that is transferred by a com-
mon homographyn case of non-zero camera trans-
lation”. Several methods were proposed to identify a
non-zero camera translation (Torr et al., 1998hker
and Denzler, 2006). A short overview of the different
approaches is given in the following, in order to show
applicability to our problem and motivate the experi-
mental comparison performed in section 5.

H = aK( Kt

4.1 Homography Decomposition

A first idea is to analyze a single homography matrix
and check for both the terms of the decomposition (1).
The termtnT is not present if there was no camera
translatiort = 0 or if the homography was induced by
the plane at infinityn = 0. Although these two cases

tricesH andH’ will be related by a similarity relation,
i.e. they will have the same determinant, eigenvalues
and some more properties, which can be found in any
linear algebra textbook. Again tf= 0 thenH’ is a
scaled rotation matrix, all eigenvaluestéfwill have
the same absolute value, and the ratio of largest to
smallest absolute eigenvalue will be 1. This is not a
two way implication, as was pointed outin (Torr et al.,
1999). In the case ai'R't = 0, the triple absolute
eigenvalue of 1 will follow for arbitrary.

For both criteria, small deviations from the ratio of
1 can be allowed to cope with noisy correspondences
and inaccurate homographies. An experimental eval-
uation of the detection rate vs. false alarms with dif-
ferent thresholds is given in section 5.2.

4.2 Global Homography

If no knowledge about the intrinsic parameters is
available, analyzing on-plane information for a single
homography matrix can not be sufficient for deciding,
whether a camera translation was present or not. E.g.
with a QR-decomposition, any homography mattix
can be decomposed into a rotati®rand an upper tri-
angular matrix,. The termtn from equation (1) is
not necessary. Using off-plane information however,
a static scene has to be assumed.

An intuitive idea is to check, whether all observed
points conform with the same homography (Fraun-
dorfer et al., 2006). In cases with just one scene plane
visible, such a test will fail. The only other cases with
a global homography are a pure rotation and change
of intrinsics without translation.

Hence, if the dominant homography from sec-
tion 2.2 is valid for almost all points, we can as-
sume that no camera translation was present. A small
amount of outliers should be tolerated, however, to

can not be disambiguated, using only knowledge of handle incorrect point correspondences. As before,
a single homography allows to handle independently this introduces an adjustable threshold and a trade-off
moving scene planes, which will not be the case for between detection and false alarm rates. An experi-
the methods presented later on. mental evaluation is given in section 5.2.



4.3 Model Selection Table 1: Various values foi andy, found in model selec-
tion literature.

Detecting degenerate camera motions without adjust- | Name Vi Y2
ing thresholds would be an appealing alternative. We | GAIC (Kanatani, 2004) 2 2
will therefore investigate statistical model selection GBIC1 (Torr, 1997) 2 2InN

approaches in this context (Torr et al., 1999; Kanatani, | GBIC2 (Torr etal., 1999) In4 In(4N)
2004). The basic idea is to select, whether the global | GMDL (Kanatani, 2004) | —In °§2 —In 0?2
homography or the epipolar geometry model is better

suited to explain the observed point correspondences. Now the cost of a model is a weighted sum of all
In a sense, this is the global homography criterion the mentioned contributions, and the model with least
of above with the threshold determined automatically, cost is selected. Different weightings have been pro-
depending on the performance of epipolar geometry. posed, however. They can be summarized as:

Hence these methods can also be used in case of un- N (M)2
known intrinsic parameters and they will also fail in Cos(M) = ZI i 5 +yrd™N 4+ yk™M(2)
case of only one plane visible. =Y

_ To apply model selection, first the two models are \yith y, andys from table 1. In the GMDL criterion,
instantiated with the respective pptlmal parameters. the image siz&is explicitly used to avoid influences
The most dominant homography is used as before androm gifferent scalings.

the epipolar geometry is established using RANSAC  These methods are easily applied to our problem
and the normalized 8-Point-Algorithm. The residuals of jgentifying camera translation. If the homogra-

sfM) for pointi € [1...N] using modeM can thenbe  phy is a “cheaper” model than the epipolar geometry,
computed. Itis not sufficient to compare these residu- in the sense of fitting the observed correspondences
als, as models with more degrees of freedom will usu- comparably accurate but with fewer degrees of free-
ally adapt better to the observed data. The costs fordom, we assume a zero camera translation was re-
using modeM have to be considered, and the task is sponsible for that global homography. In section 5.2,
to selectM explaining the correspondences with least the performance of differen andy, will be com-
residuals and least number of paramekéls. pared to each other and to the thresholded criteria.

To handle constraints of different dimensionality,
geometric model selection criteria have been devel-
oped (Kanatani, 2004; Torr, 1997). As a key, tita 5 EXPERIMENTS
point correspondence has to be considered as a vec-

tor (x;,Yi, X, y;) with D = 4 degrees of freedom. The = o, proposed methods directly tackle the mentioned

homography model constraints a pofst,yi) onto a problems of plane detection, and hence allow the
corresponding pointx;, ), and hence is a model of detection of coplanarity in a much wider range of

dimensiond) = 2. The epipolar geometry in con-  scenarios. To demonstrate the overall performance
trast restricts a point only onto a corresponding epipo- i, practical applications, we present an experimental
lar line, and as a third parameter is needed to defineeyg|yation of the algorithms. First, the basic setup
the whole correspondence, this is a model of dimen- of the experiments and qualitative results are shown,

siond") = 3. The residuals can only be measured then in section 5.2 the methods for detection of cam-
in the dimensions actually constrained by the model. o5 translation are compared.

To compensate for these different residual measure-
ments, the degrees of freedom in the correspondences; 1 Qualitative Evaluation
d™) have to influence the overall costs as well.

Further the noise disturbing the point correspon- gq; the evaluation, two types of scene setups were
dences has to be known in order to establish arelation ,caq  The first of them can be considered rather ar-
between the residu , the number of parameters ficial, showing an office environment with checker-
k™) and the dimensionalitd™) of a model. If an  poard patterns placed in the scene. These patterns
isotropic normal distribution is assumed, the standard are used only to provide good features for the point
deviationo can be estimated as the expected residual tracker, they are not needed in the further processing

of the most general modél (Kanatani, 2004): steps. The second set is made up from architectural
N scenes of model buildings.
lei(w)z Examples from the sequences with detected
o2 — i= planes are shown in figures 2 and 3. Note that for vi-

(D - d(M*)) N — k(M%) sualization, a convex hull of the coplanar points was



Figure 2: Excerpts of a calibration pattern scene with planar patches detected in the individual frames shown as polygons with
thick boundary lines.

Figure 3: Excerpts of an architectural scene with the polygons delineating planar patches found from point correspondences.

computed. Not all thgixelswithin these polygons s illustrated in a ROC-curve in figure 5. Also the
satisfy the coplanarity constraints, as can be seen e.gdetection vs. false alarm rate of the model selection
at the chimneys on top of the roof in figure 3. Also, criteria is shown for comparison. In this evaluation,
finding the exact delineations of the planes is beyond the frames with zooming cameras were ignored, as
the scope of this work. Provided only information they can not be handled by the singular and eigen-
at the sparse feature points however, the results arevalue criteria. The other methods work equally well
fairly accurate, and especially the detected planes cor-for identification of purely zooming cameras.
respond to physical scene planes. The global homography criterion seems to outper-
form the others for a wide range of thresholds. If no
5.2 Detecting Cases without Translation static scene can be assumed and one of the homog-
raphy decomposition approaches is used, the eigen-
. L val riterion m h hoice. The model
While for the plane detection itself, a ground-truth sglzgt?or:ecr(i)teﬁgeG ;It((:) ?;; eGbBEith 8i1?firingeonlc;/de

based analysis_ is hardly possible, the detection _of slightly in the choice of», show almost exactly the
camera translation can be evaluated accurately. Us'ngsame performance '

?e?:rtgégﬁtioog?e?n(rjo?;trilﬁo%ggﬁﬁﬁ sggger;cr:eesrg:are Reasonable thresholds were marked for the crite-
purely 9, 9 9 Y ria requiring one. For the global homography crite-

moving camera. These motion classes were Iab8|edrion, 12% of outliers are tolerated, for the homogra-

by hand, allowing a comparison of the algorithms’ phy decomposition based criteria, a ratio of largest to

perflf)r:mance IW ith grﬁgn?_ truthfa;a. h i smallest singular or eigenvalue of less thah7lwas
e sample graph in figure 4 shows the confidence 5 good indicator for a pure rotation matrix.
of various criteria in a translational motion over the

frames of an image sequence. Note the cases with
static camera are clearly identified by all criteria. Also
the higher peaks in the frames with general motion 6 CONCLUSIONS
allow to identify the camera translation.

Several of the criteria need a threshold for decid- Searching for homographies in point correspondences
ing the type of camera motion. As usual, this leads to is a simple, but effective method of detecting coplanar
a tradeoff between sensitivity and specificity, which feature points. As a novelty, we presented an analysis
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Figure 4: Confidence of different criteria in a camera trans- Figure 5. ROC-curve for different methods of detecting
lation. White background indicates static camera, yellow camera translation. An optimal method had 100% of de-
background a pure rotation and green background a generalected translations with 0% of false detections, which is sit-
motion including translation. uated in the lower right corner.
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