
C. Käding, A. Freytag, E. Rodner, A. Perino, J. Denzler
Large-scale Active Learning with Approximations of Expected Model Output Changes GCPR 2016

c© Copyright by Springer. The final publication will be available at link.springer.com

Large-scale Active Learning with Approximations of
Expected Model Output Changes
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Abstract. Incremental learning of visual concepts is one step towards reaching
human capabilities beyond closed-world assumptions. Besides recent progress,
it remains one of the fundamental challenges in computer vision and machine
learning. Along that path, techniques are needed which allow for actively select-
ing informative examples from a huge pool of unlabeled images to be annotated
by application experts. Whereas a manifold of active learning techniques exists,
they commonly suffer from one of two drawbacks: (i) either they do not work re-
liably on challenging real-world data or (ii) they are kernel-based and not scalable
with the magnitudes of data current vision applications need to deal with. There-
fore, we present an active learning and discovery approach which can deal with
huge collections of unlabeled real-world data. Our approach is based on the ex-
pected model output change principle and overcomes previous scalability issues.
We present experiments on the large-scale MS-COCO dataset and on a dataset
provided by biodiversity researchers. Obtained results reveal that our technique
clearly improves accuracy after just a few annotations. At the same time, it outper-
forms previous active learning approaches in academic and real-world scenarios.

1 Introduction

Over the past years, we observed striking performance leaps in supervised learning
tasks due to the combination of linear models and deep learnable image representa-
tions. However, the demand for annotated data grew in the same frequency of newly
published accuracy records. On the other hand, our ability to provide increasing labeled
datasets is limited. Similarly intuitive is the observation that not all labeled images are
equally informative for a given task. The area of active learning tackles this observation:
by designing algorithms which estimate the gainable information of unseen examples,
annotation costs can be reduced by labeling only the most informative ones.

While active learning has been an active area of research for more than 20 years
[6], the majority of algorithms have been evaluated on synthetic or small scale datasets
(e.g., [6,27,16,18,14]). Undoubtedly, these algorithms achieve reasonable results in the
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Fig. 1: Visualization of the expected model output change (EMOC) criterion and our
approximations thereof. Classification boundaries in a two-class scenario are marked as
thick lines before (solid) and after a model update (dashed). Model outputs are denoted
as thin lines. In [10], all output changes of a kernelized model are computed (a). A linear
model reduces complexity of model evaluations (b). Evaluating output changes only
on a random subset (c) or on cluster centroids (d) reduces computational complexity
further.

presented benchmarks. However, it is unclear whether their performances with respect
to computation time, memory demand, and classification accuracy scale sufficiently
to large real-world datasets. However, especially due to the increasing availability of
large unlabeled datasets, today’s active learning algorithms have to have “large-scale
abilities”. In this paper, we follow this observation by presenting an active learning
technique which is able to deal with large-scale datasets as well as unseen classes.

Our approach is based on the expected model output change (EMOC) criterion by
Freytag et al. [10], which we transfer to linear models and approximate appropriately.
Hence, the contribution of this paper is two-fold:

1. We present a realization of EMOC for regularized linear least square regression and
derive efficient closed-form solutions for score computation and model update, and

2. we introduce and analyze approximations of resulting scores to reduce computa-
tional burdens even further.

The combination of both complementary aspects overcomes limitations of previous ap-
proaches and enables active learning with sophisticated selection criteria for large sets
of unlabeled data. A schematic overview of our approaches is given in Fig. 1. We eval-
uate our techniques on the challenging MS-COCO dataset [21] and provide evidence
for the technique’s suitability in large-scale scenarios. Finally, we present results on a
real world dataset from biodiversity researchers who are particularly interested in clas-
sifying large collections of unlabeled images.

2 Related Work

Active learning is a widely studied field which aims at reducing labeling efforts. The
general goal of active learning is to optimally select examples for annotation, which
ultimately reduces the error of the classifier as fast as possible. A detailed summary
of active learning techniques was presented by Settles [26]. In the following, we only
review the most prominent and most relevant techniques.
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Established Approaches for Active Learning The early work of Roy and McCal-
lum [24] presented approximations of estimated error reduction. Since the resulting al-
gorithm is still computationally expensive, a majority of follow-up work has been based
on surrogate functions, e.g., [27,2,16,26,15,18,9,5]. A common strategy is the selection
of examples the current classifier is most uncertain about [27,15,16,18]. This strategy
is for example also used by [29,7] and further extended to query whole batches of un-
labeled data. Complementary is the idea of rapidly exploring the space [2,18] which is
purely data-driven. A third example is the preference of examples which leads to large
changes of model parameters [9,26,5]. However, these concepts miss a clear connection
to the reduction of errors, which is the ultimate goal of learning.
Related Work on Large-scale Active Learning The necessity for dealing with large
datasets is a well-known problem for active learning. A simple yet efficient solution is
to sample batches of data for evaluation, as presented by Hoi et al. [13] and Fu and
Yang [11]. Similarly, the data can be pre-clustered [1]. Alternatively, models need to
be applied which scale well to large datasets, e.g., the probabilistic k-nearest neighbors
approach by Jain et al. [15]. Another challenge is the growing number of classes. By
only taking a subset of possible updates into account, Ertekin et al. [8] showed how this
can be handled efficiently. Although these approaches scale nicely to large datasets,
they still miss a clear connection to the reduction of errors.
Approaches using Expected Output Changes In contrast to the previous approaches,
selecting examples which lead to large estimated model output changes approximates
the expected reduction of errors. Motivated by Vezhnevets et al. for the task of semantic
segmentation [28], it was later presented by Freytag et al. [10] from a general perspec-
tive. The authors initially focused on specific realizations for binary classification with
Gaussian process models. Later on, they extended their approach to multi-class sce-
narios with unnameable instances [17]. Although the reported results lead to impres-
sive accuracy gains in challenging scenarios, the authors were limited to medium-scale
datasets due to the choice of kernel classifiers. In this work, we show how to overcome
these limitations using two complementary aspects: (i) by transferring the EMOC cri-
terion to linear models and (ii) by approximating involved expectation operations. The
approach of [4] proposes to estimate an optimal mix based on expected model output
changes of passive and arbitrary active learning techniques. The idea of their method is
orthogonal to ours and can be used in addition to the techniques presented in our paper.

3 Expected Model Output Changes in a Nutshell

In this paper, we aim at extending the recently proposed expected model output changes
(EMOC) criterion to large-scale scenarios. We start with a short review of the underly-
ing idea and its multi-class variant as presented in [10,17].
The EMOC Principle In [10], Freytag et al. introduced EMOC as an approximation
to the estimated reduction of expected risk. In contrast to previous approaches, the crite-
rion favors only those examples x′ which lead to largest output changes after re-training
– averaged over any possible label y′ ∈ Y:

∆f (x′) = Ey′∈Y Ex∈Ω (L (f (x) , f ′ (x))) . (1)
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Here, f ′ refers to the updated model after including the unlabeled example x′ with the
estimated label y′ to the current training set. The output changes are calculated with a
loss function L, e.g., using an L1-loss as suggested in [10]. However, note that Eq. (1)
is not computable in practice for realistic settings due to the expectation over the input
space Ω.

Similar to the transfer from expected risk to empirical risk, the authors of [10] pro-
posed to rely on the empirical data distribution induced by the labeled data L and un-
labeled data U. For classification scenarios, we further note that labels are discrete.
Combining both aspects leads to the final EMOC criterion for arbitrary classification
scenarios with finite data:

∆f (x′) =
∑
y′∈Y

(
1

|L ∪ U|
∑

x∈L∪U

L (f (x) , f ′ (x))

)
p(y′|f (x′)) . (2)

As it turned out, this active learning criterion is more robust compared to expected risk
minimization and achieves state-of-the-art results.
EMOC for Multi-class Scenarios with Unnameable Instances Besides the theo-
retical derivation of EMOC, [10] contained efficient realizations only for Gaussian pro-
cess models in binary classification tasks. Later on, the authors extended their results to
multi-class scenarios by specifying appropriate loss functions and estimators for multi-
class classification probabilities [17]. Furthermore, they investigated scenarios where
unlabeled data contains so-called “unnameable instances”. Unnameable instances refer
to examples for which an oracle can not provide a proper label. These instances, also
termed “noise” examples, will not lead to any improvement of the classifier and should
thus be avoided during selection. The work of [17] shows that this can be achieved by
(1) density re-weighting and (2) predicting unnameable instances by learning their dis-
tribution over time. In this paper, we apply these modifications to deal with multi-class
scenarios containing unnameable instances.

The reported results in [17] clearly demonstrate the benefit of EMOC in realistic
scenarios with unnameable instances. However, the choice of Gaussian process models
limits its applicability to scenarios with only several thousands of examples. In the
following, we are interested in transferring their approach to linear models which will
allow us to tackle significantly larger data collections.

4 EMOC for Linear Models and Large Datasets

In the following, we provide two complementary contributions to overcome the previ-
ous drawbacks of EMOC on large-scale scenarios. First of all, we present how EMOC
can be applied to linear least square regression, including efficient evaluations of the cri-
terion and efficient update rules (Section 4.1). In addition, we show how to approximate
involved expectation operations to reduce computational burdens (Section 4.2).

4.1 EMOC for Linear Least Square Regression

Given the expressive power of deep learnable representations, replacing kernel meth-
ods with linear pendants can be well justifiable. For binary scenarios, a general linear
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model can be written as f(x) = wTx where the bias can be included into w by aug-
menting x with a constant dimension. The optimal solution for w ∈ RD depends on
the chosen loss function.Well-known examples are logistic regression, linear SVMs,
and least-square regression, which follow from minimizing the logistic loss, the hinge
loss, or the quadratic loss on the training data set.Classification decisions are obtained
by thresholding f (x), e.g., against zero.

For multi-class scenarios, a simple and common extension is the combination of
class-specific one-vs-all models. Thereby, a binary classifier fc is trained for each class
c and the classifier with largest response on new data x determines the classification
result. In the following, we focus on regularized least-square regression due to the re-
sulting closed-form solutions (denoted as LSR in the remainder of the paper). Note that
this directly corresponds to the linear version of Gaussian process regression as used
in [17]. In this case, the hyperplanes wc ∈ RD can be obtained as wc = C−1reg Xyc,

where the matrix X ∈ RD×N holds the N training examples with feature dimension D
and yc is the vector of binary one-vs-all labels for class c. Furthermore, the regularized
covariance matrix of the data Creg is obtained by Creg = XXT + σ2

nI. The parameter
σ2
n controls the degree of regularization and is related to the idea of weight decay [3].

When transferring the general EMOC criterion in Eq. (2) to LSR models, we obtain
the following estimate. A detailed derivation is given in the supplementary material (see
Section S1) and is purely based on applying linear algebra [22].

∆fmc (x
′) =

1

1 + x′TC−1reg x′
·
∑
y′∈Y

(
p (y′|x′) 1

|C|
∑
c∈C

∣∣wT
c x
′ − y′c

∣∣)

· 1

|L ∪ U|
∑

xj∈L∪U

∣∣xT
j C
−1
reg x

′∣∣ . (3)

Since Creg and w are of fixed size, the memory demand as well as required computa-
tion times remain constant for increasing training set sizes. Hence, we can evaluate the
EMOC score efficiently over time (denoted by LSR-EMOC).

The second important issue for a successful active learning system is the possibility
for online learning. Thereby, labeled data can be incrementally added and learning from
scratch is avoided. Intuitively, this aspect gains importance for increasing dataset sizes.
For the choice of one-vs-all LSR models, we can derive the following closed-form up-
date rules which lead to efficient online learning abilities using the Sherman-Morrison-
formula [23]. For a detailed derivation please also refer to Section S1:

w′c = wc +C−1reg x
′
(

y′c − x′Twc

1 + x′TC−1reg x′

)
, (4)

C−1reg
′
=
(
Creg + x′x′T

)−1
= C−1reg −

C−1reg x
′x′TC−1reg

1 + x′TC−1reg x′
. (5)

We denoted with w′c the new weight vector for class c after adding x′ with correspond-
ing binary label y′c. Similarly, Creg

′ denotes the updated covariance matrix. Note that
the inverse of Creg has to be computed only once and can be updated incrementally
(see Eq. (5)). Since all required variables in Eq. (4) and Eq. (5) are available, the entire
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update requires only O
(
D2
)

operations. Similar rules based on the Cholesky decom-
position [25] can be derived as well.

4.2 Approximating the Expectation Operation

Based on our previous derivations, we can directly apply the LSR-EMOC criterion to
large unlabeled datasets. However, evaluating the criterion is still moderately costly due
to the involved expectation operation with respect to all available data (second sum in
Eq. (3)). To overcome this issue, we can approximate the expectation operation, e.g.,
using Monte-Carlo-like sampling.

The simplest approximation is to use a randomly drawn subset Sr ⊂ L ∪ U when
estimating model output changes. If examples in Sr are drawn i.i.d. from all available
data, we can expect that the resulting dataset statistics will be comparable. Hence, the
expectation remains unchanged:

∆fmc (x
′ |L ∪ U) ≈ ∆fmc (x

′ | Sr) , (6)

where we used the notation of ∆fmc (x
′ | Sr) to denote that the LSR-EMOC score for

example x′ is computed using only the subset Sr. In the following, this approximation
is referred to as LSR-EMOCr-|Sr|.

Although the property in Eq. (6) seems beneficial, a mere random selection can
likely sample redundant data. We can explicitly avoid this effect by clustering all ex-
amples in advance and approximating the expectation using the set Sc of cluster cen-
troids only. Thereby, diversity is explicitly enforced which can be beneficial for focus-
ing on underrepresented regions of space. We call this approximation LSR-EMOCc-|Sc|.
Nonetheless, the equality of expectations as in Eq. (6) is no longer given.

As third alternative, we could aim at selecting an optimal subset Sopt ⊂ L∪U which
leads to the closest approximation of scores:

Sopt = argmax
S∗⊂L∪U

|∆fmc (x
′ |L ∪ U)−∆fmc (x

′ | S∗)| . (7)

Unfortunately, determining the optimal subset leads to a combinatorial problem sim-
ilarly complex as active learning itself. Hence, it is only theoretically feasible. In the
following experimental evaluations, we provide evidence that the first two approxima-
tions are well suited for large-scale active learning tasks.

5 Experiments

In the following, we present a detailed evaluation of our LSR-EMOC approach, where
we especially focus on active class discovery. Furthermore, we show the benefits of
active learning for the real-world application of camera trap analysis.

5.1 Large-Scale Active Learning for Object Classification

The first part of our evaluations is concerned with the applicability of our introduced
approaches to the challenging dataset MS-COCO and relevant subsets thereof. We use
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Fig. 2: Comparing approximations of LSR-EMOC on MS-COCO Animals.

the MS-COCO-full-v0.9 dataset [21] and follow the evaluation protocol of [17]. Thus,
we add “noise” examples which reflect the scenario that certain examples are unname-
able even for experts. In contrast to [17], we use L2-normalized relu7 features of
the BVLC AlexNet [20]. This consistently increases the accuracy in our experiments
for all active learning techniques. We optimize hyperparameters (e.g., the regularization
weight for LSR) on a hold-out set and keep the values fixed for all experiments.

Our approaches are compared against the baseline presented in [17], i.e., EMOC
on GP-regression with a linear kernel. Furthermore, we compare against several estab-
lished methods: GP-Var and GP-Unc by Kapoor et al. [18], 1-vs-2 by Joshi et al. [16],
and PKNN by Jain and Kapoor [15]. We use the parameter configuration schemes as in
[17]. Finally, we include an upper bound which results from having all unlabeled data
as labeled training examples available.

MS-COCO Animals dataset For a sanity-check evaluation, we follow [17] and use
the subset of MS-COCO which corresponds to animal categories (10 categories in to-
tal). As in [17], we apply Geodesic Object Proposals [19] to obtain 3,824 samples as
well as 4,574 image patches as training data and “noise” samples. Additionally, a hold-
out set of 750 samples is used as validation set. Each experiment starts with 10 ran-
domly chosen examples for each of 2 randomly chosen classes. All remaining data of
the training set is used as unlabeled pool. We conduct 100 experiments with different
random initializations to obtain reliable results. In each experiment, we conduct 100
queries. Learned models are evaluated after every query on a hold-out test set which is
randomly drawn from the validation set and which consists of 30 samples per class.

First of all, we were interested in a comparison between EMOC of LSR models and
our proposed approximations thereof. Note that LSR-EMOC leads to the same results as
EMOC with GP-regression and linear kernels as used in the corresponding evaluation
in [17]. Since both approaches only differ in required resource for computing scores
an additional comparison regarding accuracy is not required here. Instead, we present
results for LSR-EMOC and our approximation techniques in Fig. 2.

It can clearly be seen that the EMOC approach for LSR models as well as the
proposed approximation techniques lead to almost identical results. Hence, we con-
clude that approximating EMOC calculations is possible without a notable loss in ac-
curacy. Although the dataset is moderately small, we already obtain a speedup of 2.1
(LSR-EMOC ≈ 12.1s and LSR-EMOCr-100 ≈ 5.7s for a whole query selection). Fur-
thermore, it can be seen that pre-clustering of data yields no advantage over mere ran-



8 C. Käding, A. Freytag, E. Rodner, A. Perino, J. Denzler

0 20 40 60 80 100
2

4

6

8

10

# Queried Samples

#
D

is
co

ve
re

d
C

la
ss

es

0 20 40 60 80 100

20

40

60

80

# Queried Samples

A
ve

ra
ge

A
cc

ur
ac

y
[%

] RANDOM

GP-Var [18]

GP-Unc [18]

1-vs-2 [16]

PKNN [15]

upperBound

LSR-EMOCr-100

Fig. 3: Comparison of active learning methods on MS-COCO Animals.

dom selection. Hence, we conclude that the random selection should be preferred due
to smaller computational costs. For the datasets used in the following evaluations, we
performed similar comparisons which lead to comparable findings. Due to the lack of
space, the results are shown in the supplementary material (see Section S3). In the
following evaluations, we only show the fastest of our approximations, i.e., random
sampling with 100 samples (LSR-EMOCr-100).

As a second experiment on the dataset, we compared our proposed method with
several active learning baselines. Results are shown in Fig. 3. As can be seen, LSR-
EMOC approach performs best with respect to both performance measures. Note that
these results are comparable to the ones reported in [17]. However, our choice of LSR-
EMOC offers scalability to larger unlabeled pools.

MS-COCO dataset Since we are interested in large-scale scenarios, we also use the
entire MS-COCO dataset which can not be processed by the method of [17] in reason-
able time. Image patches are obtained by using the ground truth annotations provided
by the dataset. We use each box which is at least 256 × 256 pixel of size. Thereby, we
obtain a training set of 36,212 image patches with 80 categories that consist of three to
10,632 examples. Similarly, we obtain a validation set with 46,485 patches and three to
15,986 examples per category. To keep the same ratio of unnameable instances in the
unlabeled pool, we add 20,000 randomly selected patches with a maximal intersection
over union score of 0.25 to any ground truth bounding box. We start with three initially
known classes and 10 randomly chosen examples per category. All remaining data of
the training set is used as unlabeled pool. We evaluate performances on 30 randomly
selected validation samples per class. For robustness of our evaluations, we average re-
sults of nine random initialization. Since not all classes provide enough samples for the
hold-out test set, we evaluate models on a fixed set which consists of 2,304 examples.
In each experiment, we perform 500 query steps. All other setup parameters are kept
unchanged compared to the previous section. Note further that EMOC on GP regres-
sion (i.e., kernelized regularization LSR) is not longer applicable in this setting due to
memory consumption and computation time. Results are shown in Fig. 4.

Again, it can clearly be seen that our method performs best with respect to the
number of discovered classes. Considering accuracy, PKNN and our approach achieve
comparable results. The performance drop in the beginning can be attributed to the im-
balanced nature of MS-COCO. A corresponding visualization can be found in the sup-
plementary material (see Section S2) as well as a runtime comparison (see Section S4).
Note that a fast increase of accuracy can also be achieved by explicitly searching for
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Fig. 4: Comparison of active learning methods on MS-COCO.

0 200 400
0

20

40

60

80

# Queried Samples

#
D

is
co

ve
re

d
C

la
ss

es

0 200 400
0

20

40

# Queried Samples

A
ve

ra
ge

A
cc

ur
ac

y
[%

] RANDOM

GP-Var [18]

GP-Unc [18]

1-vs-2 [16]

PKNN [15]

upperBound

LSR-EMOCr-100

Fig. 5: Comparison of active learning methods on MS-COCO with a balanced class
distribution.

rare classes as presented in [12]. However, rare class discovery is especially challenging
in the presence of unnameable instances and not within the scope of this paper.

MS-COCO with a balanced class distribution We were finally interested in a com-
parison for a setting where classes are better balanced. Therefore, we use the previous
setup and ignore categories having more than 1,000 samples in the training set. These
classes are person (10,632 samples), dining table (3,979 samples), bed (1,400 samples)
and cat (1,020 samples). Thereby, we obtain a training set with 19,181 samples from 76
categories and a test set with 25,060 examples. After randomly selecting 30 validation
samples per class, we evaluate the methods on a test set of 2,184 samples. To augment
the data with unnameable instances, 10,000 bounding boxes are randomly drawn as
described previously. The remaining setup is unchanged. Results are shown in Fig. 5.

As can be seen, our method leads to superior results compared to all competitors. In
direct comparison with the runner-up (PKNN), we obtain the same accuracy with only
two thirds of the requested annotations. We thus conclude that our method is well suited
for active learning on large-scale datasets.

5.2 Active Learning for Camera Trap Image Analysis

In the second part of our evaluations, we are interested in applying active learning to
a task which arises in biodiversity assessments. Biodiversity researchers are interested
in quantitative analysis of animal abundance, species composition and site occupancy.
One way to treat this challenging task is to place camera traps in the wild and to record
short sequences of images if any movement is detected. Thereby, researchers are faced
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Fig. 6: Results on labeling camera trap images as either “background” or “contains-
objects” with only a small number of annotations.

Fig. 7: Example queries from the biodiversity dataset.

with huge amounts of unlabeled data which can to date only be analyzed manually.
One task is to differentiate among “background” and “contains-objects”. Using active
learning, we aim at training classifiers with few labeled data to solve this task.

To evaluate the benefits of active learning, we obtained a medium-scale dataset
which was labeled by application experts. It consists of 2,931 frames from which 2,088
show animals. Similar to the previous evaluation, we randomly select three examples
from both categories and allow 500 queries. As feature representation, we use normal-
ized relu7 features from the BVLC AlexNet calculated on the entire image. We repeat
the random initialization 10 times to obtain reliable results. Accuracy is measured on
the whole dataset after every step. Note that this is exactly the scenario which is desired
by application experts: to obtain labels for the entire dataset as reliable as possible while
manually labeling only few examples thereof. Results can be found in Fig. 6.

Again, our method leads to superior results compared with all competitors. In par-
ticular, we obtain the same accuracy as random selection with only 52% of required
annotations. Surprisingly, the performance of PKNN is dropping over time, which we
attribute to the fact that the metric learning could not cope with the variations in the
data. Qualitative results can be seen in Fig. 7 as well as in Section S5. According to
application experts, the results already lead to a valuable reduction of annotation costs.

6 Conclusion

We presented an active learning technique able to cope with large-scale data. Our tech-
nique is based on the principle of expected model output changes and builds on two
complementary aspects: the effectiveness of linear models as well as careful approxi-
mations of necessary computations. We provided empirical evidence that our approach
is capable of performing well even on challenging imbalanced datasets. Furthermore,
we presented real world experiments for biodiversity data analysis which finally show
the applicability and effectiveness of our method.
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