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Abstract. The revival of deep neural networks and the availability of ImageNet
laid the foundation for recent success in highly complex recognition tasks. How-
ever, ImageNet does not cover all visual concepts of all possible application sce-
narios. Hence, application experts still record new data constantly and expect the
data to be used upon its availability. In this paper, we follow this observation
and apply the classical concept of fine-tuning deep neural networks to scenar-
ios where data from known or completely new classes is continuously added.
Besides a straightforward realization of continuous fine-tuning, we empirically
analyze how computational burdens of training can be further reduced. Finally,
we visualize how the network’s attention maps evolve over time which allows for
visually investigating what the network learned during continuous fine-tuning.

1 Introduction

“How would you train a deep neural network when new data from potentially new
categories is continuously added to the training set?”

Machine learning and vision have significantly benefited from benchmarking on
fixed datasets, since they allowed for comparison between algorithms and developed
models [1–5]. However, our world is an environment which undergoes ongoing change.
Instead, both the semantic space of object categories as well as the visual appearance
of known categories are not fixed. To handle this, we humans are able to continuously
learn and adapt our knowledge. Both aspects, fixed models and changing environments,
are in contrast with each other. Therefore, incremental learning is an important field of
research aiming at developing visual recognition systems that are able to deal with new
data from known or even completely new classes by performing learning in a contin-
uous fashion. Furthermore, it is an essential element for active learning [6] and active
discovery [7] approaches, which strictly require continuously changing models. Incre-
mental learning aspects have been studied for a great variety of different models e.g.,
[8–10], but not so far for deep neural networks (DNN).

In addition to large and fixed datasets, the resurrection of DNNs lead to the lat-
est innovation pitch in computer vision research. Besides training deep models from
scratch, additional benefits have become apparent when looking at the common use of
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Fig. 1: At the beginning of the learning process, we have a pre-trained network as ini-
tialization for parameters. The first step is the classical fine-tuning where the final layer
is replaced to fit the novel task (shown as colored dots). Upon the availability of more
data, the relative importance of initial weight estimates is further reduced (indicated
by reduced blue color). When even novel categories are discovered, also the network
architecture needs to be adapted, e.g., by adding new output variables.

fine-tuning to small datasets. Originally, fine-tuning has been referred to the process
of pre-training neural networks with a generative objective followed by an additional
training phase with a discriminative objective on the same dataset [11]. More recently,
fine-tuning refers to re-using parameter values estimated on potentially large datasets
as initialization in applications with limited access to labeled data. This approach has
paved the way to significant performance gains in many applications, e.g., [12–16].

From the perspective of continuous learning, the latter fine-tuning scenario can be
seen as the extreme case of continuous learning which is restricted to only two time
steps: pre-training and update.

More general forms of continuous learning for deep convolutional neural networks
(CNN) have hardly been studied before. The question remains how continuous learn-
ing with a series of update steps can be performed robustly and efficiently. To study
this question, we continuously fine-tune convolutional neural networks and empirically
evaluate the effect of individual hyperparameters on the robustness of learning. A visu-
alization of the process of continuous learning is given in Fig. 1.

The concept of continuous fine-tuning is general and applies to any form of a deep
neural network. In this paper, we especially focus on image understanding scenarios
and hence apply deep convolutional neural networks. A possible application scenario is
active learning, where the updated model is immediately required for the sub-sequent
selection [6]. Similarly, automated visual monitoring scenarios require efficient con-
cepts for continuous learning when labeled data is incrementally provided by expensive
but rather slow experts. In consequence, we specifically focus on scenarios where only
little novel data is available in each update step but an updated model should be imme-
diately available.

We provide empirical evidence for guidelines which show that the computation time
for parameter updates in continuous learning scenarios can be significantly reduced. Al-
though our empirical findings are intuitive, we believe that sharing our obtained insights
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is beneficial for a broader audience in several application areas. Furthermore, we inves-
tigate how CNNs evolve over time by visualizing how the attention of the nets shifts
towards discriminative parts of newly added categories. This visualization allows for
controlling and analyzing the continuous learning process.

2 Related Work

Since the necessity for dealing with continuous data streams is vast, update techniques
for a variety of classification techniques have been proposed. While a complete overview
is far beyond the scope of this paper, we briefly present examples for some well-
established classification techniques.
Continuous Learning for Various Model Types The frequently used approach of
online learning can be viewed as a special case of continuous learning. Here, the train-
ing dataset is not presented at once (as in batch learning) but with only a single example
in every time step. Support vector machines (SVMs) have been the presumably most
frequently used model in the last two decades. For SVMs, Cauwenberghs et al. pre-
sented online learning with fixed categories [17]. Based on these results, Tax et al.
[9] introduced online learning of Support Vector Data Description (SVDD) models for
novelty detection scenarios. Later on, incremental learning for the frequently used SVM
solver SMO (sequential minimal optimization) with varying numbers of categories has
been presented by Yeh and Darrell [18]. Gaussian Process (GP) models, which are
closely related to SVMs, have been used for continuous learning of object categories
by Freytag et al. [8]. Mensink et al. propose update techniques for nearest class mean
(NCM) classifiers in [19] followed by Ristin et al., who present continuous extensions
of a hybrid model consisting of NCM and RDF [20]. Sillito and Fisher derive update
rules for GMM models in [10] which laid the foundation for the work of Hospedales et
al. for the task of continuous class discovery [21]. Despite all reported benefits, these
techniques have been rarely used recently due to their rather low model complexity
compared to the one provided by deep neural networks. Let us therefore briefly investi-
gate continuous learning approaches for deep nets.
Continuous Learning of Deep Neural Networks A decade ago, Wilson and Mar-
tinez compared batch learning and online learning of neural networks in [22]. Accord-
ing to their argumentation, online learning should be always preferred over batch learn-
ing, especially for large datasets. While the currently preferred mini-batch learning [23]
is somewhat in-between, the authors of [22] found no practical advantage of learning
with mini-batches over online learning. Similar arguments have been put forward by
LeCun et al. [24]. However, online learning assumes the number of categories within
the data stream to be known in advance. Furthermore, multiple cyclic passes (epochs)
through the dataset are required for robust estimation of parameters.

For the more general problem of continuous learning, also novel categories have to
be included into the existing network appropriately. One example is the work in [25] for
training of deep networks with incrementally added categories. The authors approach
the necessity of increased network capacity by duplicating the existing network, assign-
ing available classes equally to one of both networks, fine-tune each net individually,
and adding a third network on top to predict which net to use. Thus, this strategy can



4 C. Käding, E. Rodner, A. Freytag, J. Denzler

be seen as training a decision tree with a deep network in every node. Besides this rel-
atively complex, memory-intensive, and computationally demanding approach, little is
known so far how to continuously train deep networks efficiently.

Fine-tuning of Deep Neural Networks As mentioned before, fine-tuning of pre-
trained networks to new tasks can be viewed as a special case of continuous learning
with only two time steps: one initial learning step and one update step. A variety of
publications underlines the benefits which arise from pre-training deep networks on
large datasets. As an example, Agarwal et al. stated that “pre-training significantly
improves performance” for the task of object recognition [12]. Similarly, Girshick et
al. draw the conclusion that “We conjecture that the ‘supervised pre-training/domain-
specific fine-tuning’ paradigm will be highly effective for a variety of data-scarce vision
problems.” [16]. Further benefits have been reported for image retrieval [13], semantic
segmentation [14], fine-grained recognition [15], or object localization [26]. However,
fine-tuning is only used with a fixed dataset of a new task. In this paper, we empirically
investigate the ongoing process of “continuous fine-tuning” with increasing data and
number of categories for improving the model of a single task.

Further Related Topics Among the previously shown works, there is a growing set
of approaches which aim at replacing fixed models with systems that are able to adapt
themselves continuously. A closely related research area is domain adaptation (e.g.,
[27–29]). Different domains can either occur from different recording techniques (e.g.,
a change of camera technology) or from a change of data distributions between two
data collections. In contrast to our application scenario, domain adaptation techniques
aim at estimating the differences between domain distributions to optimally leverage
information between data collections. Instead, we take incoming data as-is and allow
the network to adapt itself smoothly over time in case of occurring domain shifts.

Similarly related is the area of transfer learning [30, 29], which is also known as
learning to learn [31]. In transfer learning scenarios, new categories are incrementally
added to previously known data. The underlying assumption is that transferring model
parameters from known but semantically related categories is beneficial to represent
the novel category. Instead of explicitly finding support tasks or categories to transfer
parameters, we rely on the learned representational power of a single network shared
by all categories.

3 Deep Neural Network Learning in a Nutshell

Before we investigate continuous learning of deep neural networks, we briefly review
the learning of these models and define hyperparameters used in our experiments.

Batch Learning of Deep Networks Let f(x;θ) be the output of a neural network
with parameters θ for a given image x ∈ Ω. Learning a network from a given labeled
training set D = (X,y) = (xi, yi)

N
i=1 ⊂ (Ω × Y) boils down to minimizing a desired

learning objective. Results of computational learning theory tell us that the objective
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should be comprised by the loss of the training set and a regularization term ω:

L̄(θ;D) =
1

N

N∑
i=1

L(f(xi;θ), yi) + ω(θ) . (1)

In contrast to the overall training objective L̄, the loss term L operates on individual
examples and compares the obtained with the desired model outputs. Common choices
for L are the quadratic loss for regression tasks or the softmax loss for multi-class
classification scenarios. The term ω is usually an elastic-net regularization [32] that
combines L2 and L1-regularization of the parameters θ.

As in many other application domains, vision tasks require model functions of high
complexity. Therefore, f(xi;θ) is commonly a composition of functions, usually re-
ferred to as layers, with their individual parameters:

f(x;θ) = fL (. . . (f2 (f1 (x;θ1) ;θ2) . . .) ;θL) . (2)

The underlying idea of “deep” learning is to train these layered models f(·;θ) directly
from input data by optimizing all involved parameters θ = (θ1, . . . ,θL) jointly with
respect to the single loss function specified in Eq. (1). Unfortunately, this learning
objective is non-convex and highly non-linear, except for trivial architectures. Thus,
closed-form solutions for minimization, such as the ones existing for simpler models
like least-squares regression [33, Sect. 3.1.4] can by no means be expected. Instead,
optimization techniques such as gradient descent need to be applied which iteratively
refine initial parameter guesses and ideally converge to suitable (local) optima. For lay-
ered models in Eq. (2), applying the chain rule allows for calculating partial derivatives
for parameters of hidden layers which lead to the backpropagation algorithm [34].
Learning with Mini-Batches Since gradient descent requires the entire “batch” of
training examples at once, it is rarely feasible for large-scale datasets. In consequence,
today’s standard optimization techniques are stochastic gradient descent (SGD) [35]
and mini-batch gradient descent [36]. Both techniques approximate the true gradient
∇θL̄(θ;D) of the objective function using a randomly drawn subset Sk ⊆ D in every
iteration k. SGD originally referred to the special case of a single example in each
iteration (i.e., |S| = 1), whereas mini-batch gradient descent uses larger sets (1 <
|S| � N ). Since both techniques rely on randomized approximations of the underlying
gradient, both are commonly called stochastic gradient descent. In the remainder of this
paper, we follow this naming convention and refer with SGD to every gradient descent
which is not using the entire training set for gradient calculations.

In every iteration, SGD computes an approximated gradient ∇̃θ based on the cur-
rently drawn subset:

∇̃θL̄(θ;Sk) =
1

|Sk|
∑
i∈Sk

∇θL(f(xi;θ), yi) +∇θω (θ). (3)

Based on that, parameter estimates are updated using a gradient descent step of length
γ > 0 which is often referred to as learning rate:

θk+1 = θk − γ · ∇̃θL̄(θk;Sk) . (4)
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There are plenty of further optimization modifications including momentum [37], weight
decay [34], dropout [38], as well as annealing schemes for the learning rate [39]. Since
we are not empirically analyzing the training deep neural networks per se or the in-
fluence of such modifications on continuous learning, we refer to [36, 40, 37] for an
evaluation of the different strategies.

4 Continuous Learning of Deep Neural Networks

In the following, we first define continuous learning scenarios and then propose differ-
ent strategies how to cope with them with straightforward fine-tuning when using deep
neural networks.
Continuous Learning Scenarios In contrast to standard batch learning applications,
we are interested in continuous learning of deep neural networks in this paper. Thus, we
are given a series of learning datasets Dt ⊂ (Ω ×Yt). The goal is to learn the network

f(·; θ̂
(t)

) for each time step t ≥ 0 with dataset Dt continuously over time. Depending
on the overlap between the sets Dt for different t, we can differentiate between three
scenarios:

(F) Classical fine-tuning for new tasks: Only two disjoint datasets are given and
the task changed, i.e., D0 ∩ D1 = ∅ and Y0 ∩ Y1 = ∅. This is for example
used in [12–16] when a convolutional neural network pre-trained on ImageNet
is fine-tuned in one step by either re-learning the last layer only or by perform-
ing optimization steps for all layers. For simplicity in notation, we ignore that
fractions of D1 can already be included in D0. This can happen in special cases
when the one-step fine-tuning is performed for new datasets covering a part of
the original one.

(C1) Continuous learning of known classes: In this case, we get additional training
examples for the classes we already know from the initial learning set D0, i.e.,
∀t : Y0 = Yt and Dt−1 ⊂ Dt. This case describes a continuously growing
training dataset and resembles the classical online learning setup.

(C2) Continuous learning of known and new classes: In addition to the previous sce-
nario, we might also get examples of completely new classes, i.e., ∀t : Yt−1 ⊆
Yt with both sets being not necessarily equal and Dt−1 ⊂ Dt.

In the following, we refer to Ut = Dt\Dt−1 as the update set of time step t.
Continuous Learning with Incremental Fine-tuning As stated before, the learning
objective in Eq. (1) is in general non-convex and highly non-linear. In consequence,
there are no closed-form update rules available like in the case of Gaussian process
regression [41]. However, we can make use of the technique of warm-start optimiza-
tion [42, 43], where we use the parameters θt−1 of the previous time step as initializa-
tion for the optimization of the current parameters θt. This strategy is also applied for
standard use of fine-tuning and assumes that the network’s parameters θt vary smoothly
with the extensions of the training dataset. Furthermore, it expresses the expectation that
the optimization is more robust against bad local minima when started from a parameter
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vector which is likely close to an appropriate solution. Since case (F) is already well
studied, we focus on (C1) and (C2) in the remainder of this paper.

Whereas (C1) can be directly tackled with fine-tuning without any modification of
the network, scenario (C2) requires extending the last layer of a deep neural network
for new categories. In particular, we need to add an additional output node in the last
layer along with parameters in the corresponding previous fully-connected layer. We
initialize those new parameters randomly using the normalization technique by [44].

In both settings, (C1) and (C2), a number of questions remains in practice. For ex-
ample, it is unclear whether the solver needs to be run until convergence in each update
step. It might be even beneficial to perform an early stopping of the optimization to in-
crease generalization performance [45]. Furthermore, there is no clear guidance for how
many layers we can adapt robustly when small sets of novel data arrives consecutively.
Finally, the influence of label noise on the success of model updates is important to
know for real-world applications. In Section 5, we empirically investigate these ques-
tions. In addition, we visualize in Section 6 the network’s region of attention which
changes most strongly when new data is continuously added.

5 Empirical Evaluation of Continuous Learning of DNNs

We conducted experiments in continuous learning scenarios with known and unknown
classes. For different update strategies, we evaluated the classification accuracy of the
continuously learned models. Our main findings can be summarized as follows:

1. The number of required SGD iterations can be significantly reduced in compari-
son to standard batch learning and set to small constants during training without a
notable loss in test accuracy (Section 5.3).

2. Continuous fine-tuning by neglecting already known data leads to overfitting to-
wards the update samples (Section 5.4).

3. Continuous fine-tuning is robust with respect to small amounts of label noise (Sec-
tion 5.5).

We also studied the influence of the SGD batch size |S| and the learning rate γ on the
quality of continuous fine-tuning but found no surprising behavior. The results can be
found in the supplementary material.In the following, we briefly explain the experimen-
tal setup before inspecting each of the previous three aspects in detail. Furthermore, we
investigate the principal applicability of continuous learning for CNNs in Section 5.2
before we show more efficient realizations in the following sections.

5.1 Experimental Setup, Datasets, and Implementation Details

Network Architectures and Learning Since our main interest is in image catego-
rization and understanding, we restrict our experiments to CNNs. Thereby, the desired
invariance with respect to translation is explicitly encoded into the network layout. In
all our experiments, we use the BVLC version of the classical AlexNet architecture [23]
with network weights which have been pre-trained using the ImageNet ILSVRC-2010
challenge dataset [46]. Experiments were conducted with MatConvNet [47].
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It is well known and extensively studied that a careful choice of the learning rate
is among the most crucial aspects for learning [48]. Hence, a intensive evaluation of
different learning rates is beyond the scope of this paper. Instead, we use results of
preliminary experiments and fix the learning rate to 0.001 in all scenarios. This choice
is consistent with reported observations [22] and allows for comparable results in all
experiments. Furthermore, we use small update sets Ut of size |Ut| = 25 which contain
only samples from a single category. We further follow the default parameter settings
of MatConvNet [47] and apply a weight decay of 0.0005 and a momentum of 0.9 .

Datasets for Evaluations For the evaluation of our proposed learning strategies, we
use two state-of-the-art datasets. First, we use MS-COCO-full-v0.9 of Lin et al. [4]
which provides a challenging setup similar to real-world applications. Since we are
interested in classification tasks, we consider all ground truth bounding boxes with at
least 256 pixel height and width. Furthermore, we only use categories that consist of
500 to 1,000 examples. Thereby, we obtain 15 categories which provide enough training
examples for initial training and several update sets. The total number of images of this
subset is approximately 11,000 for training and test set each.

As second evaluation dataset, we chose the Stanford40Actions dataset introduced
in [49]. The dataset contains still images of different activities and provides a split into
4,000 images for training and 5,532 hold-out images for testing. Hence, adapting pre-
trained models to the new task is clearly required.

In comparison with large-scale datasets like ImageNet, both datasets contain only
small numbers of examples. Thereby, they are well suited for evaluating continuous
learning with little data and allow for insights in a rather uncommon application sce-
nario for deep neural networks.

Experimental Setup To evaluate continuous learning, we randomly pick 10 of the
given classes to initially fine-tune the CNN. From the remaining data, we chose 5 more
classes randomly which serve as novel data to be added during the process of continu-
ous learning. For every category, we randomly select 100 examples. Those samples are
either used as initial known data and or as update sets depending on if the category is
selected to be added during the experiments or to be known initially. Classification ac-
curacy after every update step is measured on the corresponding test data of the dataset.
To reduce randomization effects during evaluation, we repeat the process of random
sample selection three times. Furthermore, the entire setup is conducted for three dif-
ferent class splits, which yields 9 different setups to average results over.

5.2 Comparison of Continuous and One-step Fine-tuning

In a first experiment, we analyze whether continuous fine-tuning of deep neural net-
works is possible without a loss in accuracy. As baseline serves the classical one-step
fine-tuning paradigm, where we perform only a single update step when all data DT is
available. This is similar to case (F) described in Section 4. We compare this baseline
against continuous fine-tuning, for which we conduct an fine-tuning cycle as soon as an
update set Ut becomes available which corresponds to case (C1) and (C2). Due to the
design of our experiments, we evaluate both cases in a mixed manner because not every
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(b) Stanford40Actions

Fig. 2: Comparison of classical one-step fine-tuning (i.e., waiting for all data to be avail-
able) and continuous fine-tuning (i.e., fine-tuning as soon as new datasets are available).

update set contains new classes. An additional evaluation of case (C1) can be found in
the supplementary material.

Arguably, if one-step fine-tuning and continuous fine-tuning have been finally con-
ducted with exactly the same amount of data, it sounds intuitively plausible that esti-
mated parameters lead to the same classification accuracy. However, the path (θt) of
parameters the continuous learning follows are end in a completely different initializa-
tion for θT in the last step compared to one-step fine-tuning. For the importance of
initialization, see also the initialization-as-regularization discussion in [11]. We follow
the previously described experimental setup and perform 10 epochs with and a SGD
batch size of |S| = 64 per update to fine-tune all layers. Although we also performed
analyses with adapting parameters of an arbitrary number of layers, experimental results
lead to similar findings. Results are shown in Fig. 2.

It can clearly be seen that both learning approaches obtain similar accuracy after
all training data has been processed. Hence, we conclude that continuous fine-tuning of
deep neural networks is possible without significant loss in accuracy. However, conduct-
ing an entire fine-tuning cycle whenever a new update set is available is computationally
expensive. In the next experiment, we analyze how to reduce this computational burden.

5.3 Speeding Up Continuous Fine-tuning

The simplest solution for reducing the computation time of each fine-tuning step is
to reduce the total number of SGD iterations from entire epochs to few steps done at
each update. However, this comes at the risk of interrupting gradient descent too early,
i.e., far off the local optimum. In the following, we empirically investigate how many
iterations we need in each step without reducing the classification accuracy of learned
models. Therefore, we keep the previous experimental setup and only vary the number
of SDG iterations Tsgd conducted in each update step but keep the SGD mini-batch size
of |S| = 64.
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Fig. 3: Performance comparison for different numbers of epochs and therefore an in-
creasing number of SGD iterations used during fine-tuning.

It is common practice to express the number of SGD iterations relative to the total
number of known training examples, i.e., in epochs e. The resulting number of SGD
iterations, i.e., gradient descent updates, is then given by Tsgd =

⌈
nt

|S|

⌉
· e. In the first

part of this analysis, we investigate how many epochs we require performing continuous
fine-tuning in a stable fashion for all layers. Hence, we evaluated how many epochs
we need to successfully learn deep neural networks continuously. Results for different
epochs in each step are shown in Fig. 3.

As can be seen, the resulting accuracy remains surprisingly unchanged even with
extremely few iterations in each update step. In fact, even a half epoch can be suffi-
cient and we only observe a clear drop in accuracy for the extreme case of 0.1 epochs.
We attribute this observation to the effect that 0.1 epochs can easily miss selecting a
representative subset for SGD optimization.

Based on the previous results, the question arises whether it is indeed necessary to
see every training example in each update. To answer this question, we go beyond the
previous analysis and further explore the possible range of fast fine-tuning. Whereas
the number of SGD steps grew previously due to the increasing number of known ex-
amples after each step, we now fix the number of SGD update steps Tsgd to a constant
number. This leads to a further significant speed-up of DNN learning. Each update step
is comprised of a single mini-batch of size 25 which equals the update set size |Ut|. The
results can be seen in Fig. 4.

Similarly to our previous analysis with a varying number of epochs (i.e., with an
increasing number Tsgd of SGD steps), we observe again that we can drastically reduce
the required computations without a strong loss in accuracy. As previously, we attribute
the significant accuracy drop for Tsgd = 1 to the fact that no representative subset could
be randomly sampled. In the next analysis, we investigate whether alternative sampling
techniques can improve the accuracy of continuous fine-tuning.
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Fig. 4: Performance comparison for continuous fine-tuning with a fixed number Tsgd of
SDG iterations compared to an increasing number of SGD iterations depending on the
number of training examples (fixed number of epochs).

5.4 Continuous Learning with Varying Update Influence

A majority of techniques that incrementally update classifier parameters involves a hy-
perparameter λ that weights the influence of the new data of the current update set. In
the following, we empirically answer the natural question whether different weights for
old and new data also lead to an improved continuous fine-tuning accuracy for DNNs.
Therefore, we sample examples during SGD iterations non-uniformly and dependent
on an example-specific probability pi:

pi =
1− λ
|Ut|

if xi ∈ Ut and
λ

|Dt−1|
otherwise , (5)

with 0 ≤ λ ≤ 1. For the extreme case of λ = 0, training examples of previous time
steps are completely ignored during sampling and their information is only indirectly
used through parameter initializations. This could be seen as a naive realization of con-
tinuous learning since it is similar to online updates of common classification models.
Furthermore, λ = 1 is equivalent to the previous continuous fine-tuning analyses but
postpones the usage of examples from the current update set to the next update step. For
values of λ within that range, we can control the relative importance of update set data
by their probability of being sampled. To investigate the influence of λ, we performed
Tsgd = 10 iterations with a fixed SGD size of |S| = 25 which corresponds to the num-
ber of added samples |Ut|. The results for different values of λ can be seen in Fig. 5
where parameters of all layers are adapted. Note that we also investigated to learn only
upper layers, which lead to similar results (can be found in the supplementary material).

We conclude that a CNN can only be fine-tuned robustly in an continuous fashion
if a fraction of new and old data is considered during SGD iterations. The balance of
the data has to be chosen carefully because already known data prevents the net from
overfitting to new data and too few new data is not sufficient to prevent this behavior.
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Fig. 5: Incremental fine-tuning of all layers with different choices of λ.

In our case, new samples are considered as known, one step after they are added. This
explains the similar results λ = 0.75 and λ = 1.0. For the extreme case λ = 0, iterative
fine-tuning completely fails which can be attributed to complete overfitting to the new
update set Ut.

5.5 Continuous Learning with Label Noise

In contrast to the previous analyses, object labels are hardly perfect in real-world appli-
cations, especially with non-experts as annotators in the loop. We were thus interested
in how robust the process of continuous learning is against wrongly provided label in-
formation. To investigate this question, we perform 10 epochs in each update step, and
optimize parameters of all layers. We work with a mini-batch size of |S| = 64. To ana-
lyze the influence of label noise, a specific fraction of the newly added data is replaced
with examples from remaining categories while keeping the label as in the previous
experiments. The results for different amounts of the induced label noise are shown in
Fig. 6.

As expected, the resulting accuracy is constantly degraded with an increasing level
of wrongly labeled examples. However, 10% noise results in only 2% loss in accuracy
which is likely acceptable for real-world applications.

6 What Was New? Visualizing Network Changes

Especially when new categories are added to the training set, we can expect that fil-
ters in convolutional layers become specifically tuned to characteristic patterns of the
new category. To visually investigate where and how our network changed over time,
we first pick the filter that underwent the most drastic change and then visualize it’s
corresponding attention region in the image.

We expect that the chosen filter is likely to pay attention to a pattern which is dis-
criminative for the category that has been added during the learning step. An intuitive
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Fig. 6: Impact of label noise in update sets on continuous learning performance.

possibility to measure the “change” of a filter is to calculate differences of filter weights
before and after the update. However, this strategy might easily lead to wrong interpre-
tations, since large weight differences in one layer could be partially compensated by
changes in previous layers. Hence, large changes of filter entries do not need to corre-
spond to changes in the resulting learned representation. Due to this reason, we follow
an alternative selection strategy: we determine the filter with the largest overall change
of its outputs rather than in its parameters. The output change is measured by L2-norm
of differences of outputs obtained from single filters before and after an update with
new samples. We only consider the conv5 layer of AlexNet, since it is known to be
related to semantic part information [50, 51].

For visualizing the corresponding attention region of the filter in the image, we
could use directly the conv5 activations. However, the resolution of the conv5 chan-
nel is rather low. For a spatially precise localization analysis of the filter’s attention,
we use the gradient technique of [51, 52] to calculate attention maps. We then compute
bounding boxes from these maps, by considering the maximum response location as
center and twice the standard deviation in x and y direction as width and height. This
allows us to visualize the main attention region of the chosen conv5 filter.

Visualization Results We apply our visualization technique to the previously inves-
tigated scenarios of continuous learning and visualize the attention maps after a single
category has been added. We use update sets of sizes |Ut| = 100 and learn parameters of
all layers. The output change of conv5 filters is evaluated on all examples of the novel
category. We show the result of our visualization in Fig. 7 for different categories.

As can be seen on the left hand side of the figure, the conv5 channel with the
highest output change often shifts focus to parts of the newly added class, although there
was no localization information provided during training. Furthermore, it is interesting
to see that the representation within the convolutional neural network adapts already for
a small update set size. More visualizations can be found in the supplementary material.
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Fig. 7: Visualization of network changes during continuously learning categories from
the Stanford40Actions dataset. We visualized attention regions of the single filter in
conv5 which changed most strongly during a single learning step. Regions are shown
before and after the respective category became known (magenta box and cyan box).
Left: the attention shifts towards the action-related objects. Middle: no visible changes
in attention. Right: the attention region shifted to contextual related areas.

7 Conclusions

In this paper, we studied continuous learning of deep neural networks with incoming
data streams. While previous work focused on one-step fine-tuning pre-trained networks
to novel tasks, we empirically studied more general scenarios of frequent and small up-
date steps. Based on our analyses, we conclude that continuous learning can be directly
achieved by continuous fine-tuning. We further investigated how continuous fine-tuning
can be speeded up by reducing the number of SGD iterations. In fact, not even a single
epoch is required during each update step to train models robustly. Furthermore, we also
analyzed the influence of label noise as it is typically present in real-world applications.
While heavily noisy data severely degrades the accuracy of learned models, we found
that even with 10% incorrectly labeled data continuous learning can still be successful.
Finally, we visualized the change of the network’s attention during continuous learning.
Thereby, we were able to visualize how well the model shifts its focus to semantically
plausible regions of recently learned categories.
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16 C. Käding, E. Rodner, A. Freytag, J. Denzler

24. LeCun, Y.A., Bottou, L., Orr, G.B., Müller, K.R.: Efficient backprop. In: Neural networks:
Tricks of the trade. Springer-Verlag Berlin Heidelberg (1998) 9–48

25. Xiao, T., Zhang, J., Yang, K., Peng, Y., Zhang, Z.: Error-driven incremental learning in deep
convolutional neural network for large-scale image classification. In: International Confer-
ence on Multimedia. (2014) 177–186

26. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level image rep-
resentations using convolutional neural networks. In: CVPR. (2014)

27. Hoffman, J., Darrell, T., Saenko, K.: Continuous manifold based adaptation for evolving
visual domains. In: CVPR. (2014) 867–874

28. Tzeng, E., Hoffman, J., Darrell, T., Saenko, K.: Simultaneous deep transfer across domains
and tasks. In: ICCV. (2015) 4068–4076

29. Pan, S.J., Yang, Q.: A survey on transfer learning. TKDE 22 (2010) 1345–1359
30. Jie, L., Tommasi, T., Caputo, B.: Multiclass transfer learning from unconstrained priors. In:

ICCV. (2011) 1863–1870
31. Thrun, S.: Lifelong learning: A case study. Technical report, DTIC Document (1995)
32. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the

Royal Statistical Society: Series B (Statistical Methodology) 67 (2005) 301–320
33. Bishop, C.M.: Pattern Recognition and Machine Learning. Information Science and Statis-

tics. Springer (2006)
34. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-

propagating errors. Nature (1986) 323–533
35. Bottou, L.: Stochastic gradient tricks. In: Neural networks: Tricks of the trade. Springer-

Verlag Berlin Heidelberg (2012) 430–445
36. Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., Le, Q.V., Ng, A.Y.: On optimization methods

for deep learning. In: ICML. (2011) 265–272
37. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and

momentum in deep learning. In: ICML. (2013) 1139–1147
38. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: A

simple way to prevent neural networks from overfitting. JMLR 15 (2014) 1929–1958
39. Zeiler, M.D.: Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701

(2012)
40. Larochelle, H., Bengio, Y., Louradour, J., Lamblin, P.: Exploring strategies for training deep

neural networks. JMLR 10 (2009) 1–40
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