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Abstract. The in-depth analysis of heart movements under varying
conditions is an important problem of cardiac surgery. To reveal the
movement of relevant muscular parts, biplanar X-ray recordings of im-
planted radio-opaque markers are acquired. As manually locating these
markers in the images is a very time-consuming task, our goal is to
automate this process. Taking into account the difficulties in the recorded
data such as missing detections or 2D occlusions, we propose a two-stage
graph-based approach for both 3D tracklet and 3D track generation. In
the first stage of our approach, we construct a directed acyclic graph
of 3D observations to obtain tracklets via shortest path optimization.
Afterwards, full tracks are extracted from a tracklet graph in a similar
manner. This results in a globally optimal linking of detections and track-
lets, while providing a flexible framework which can easily be adapted to
various tracking scenarios based on the edge cost functions. We validate
our approach on an X-ray sequence of a beating sheep heart based on
manually labeled ground-truth marker positions. The results show that
the performance of our method is comparable to human experts, while
standard 3D tracking approaches such as particle filters are outperformed.
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1 Introduction

A fully automated system capable of analyzing cardiac movements could signifi-
cantly help doctors to gain a highly detailed insight into muscular movements
under various conditions and to refine surgical strategies for treating heart-related
diseases. To analyze heart movements, X-ray recordings are employed in which
implanted radio-opaque markers reveal the movement of all relevant cardiac
muscles. Fig. 1a shows the biplanar acquisition setup. However, as can be seen in
Fig. 1b, X-ray videos of the beating heart containing implanted markers usually
have low contrast due to contiguous anatomical structures, and inevitably contain
numerous occlusions of the markers. As manually locating these markers is a
tedious and time-consuming task, the automatic and accurate tracking and iden-
tification of divergently moving markers under severe occlusions is an important,
practically relevant, and challenging task.



(a) Acquisition system (b) Example images

Fig. 1: (a) Biplanar high-speed X-ray acquisition system (NeurostarR©, Siemens AG),
(b) X-ray images of both camera views showing a sheep heart with implanted markers.

Previous works dealing with heart motion tracking [14,13] involve a lot of
manual interactions, yet only sparse marker configurations can be processed. In
the computer vision community, multi-object tracking algorithms mainly assume
appearance or motion affinity [5,8,19]. However, as is the case in this application,
targets are not always distinguishable. Simple online object tracking approaches
such as the Kalman [17] or particle filter [5,11] typically fail in such settings due
to improper predictions that cause wrong matches between tracks and detections.
Local optimization schemes such as the Hungarian algorithm [10], bipartite graph
matching [4], or energy minimization [1] consider the best assignment between
tracks and detections or detections and detections.

Recently, several global tracking methods based on flow networks have been
proposed to avoid local optima and to prevent linking of non-stationary false
positive detections [20,2,18,12]. For these approaches, multi-object tracking is
solved by conversion into a combinatorial optimization problem which can be
solved in polynomial time [6,20]. Generally, for graph-based tracking, observations
are represented by vertices, while costs are assigned to edges to denote various
levels of support for associations between observations. Solutions of the multi-
object tracking problem are then returned as paths with minimum or maximum
costs. The popular mass-flow approach presented in [2], however, is not applicable
in our scenario, as the graph topology is based on a discrete spatial subdivision
which leads to impractically large graphs to achieve sub-pixel accuracy.

Current work on tracklet-based multi-object tracking has shown promising
results [19,15,9,16]. Possible approaches are based on tracklet assignment in an
iterative [19,10] or non-iterative way [15]. In [16], a sliding window that shifts
with every frame is used and tracklets are found via inference from a set of
Bayesian networks. Similarly, in [19] particle filters are used to locally generate
tracklets from a temporal sliding window. However, the general drawback of
extracting tracklets by considering only observations over a short period of time
is that useful global information might be lost.

We tackle the dense multiple 3D object tracking problem by a two-stage
Directed Acyclic Graph (DAG) formulation. Motivated by our medical application
scenario, we do not use any appearance consistency or common assumptions such
as the homography constraint [1]. In the first stage of our approach, tracklets
are generated by finding the shortest path in the graph of all 3D detections.
Afterwards, final tracks are found in a similar way by finding the shortest path in
the graph of all tracklets. This results in a globally optimal linking of detections



(a) The landmark graph G includes ver-
tices for all 3D point hypotheses and edges

between vertices of succeeding frames.

(b) The tracklet graph G′ contains vertices
for all tracklets and edges between all ver-

tices in a temporally consistent order.

Fig. 2: Exemplary graph topologies used in our approach. Additional edges from source
and to sink vertex (dotted and dashed lines) allow initiation and termination of tracklets
or tracks at any time.

and tracklets, while providing a flexible framework which can easily be adapted
to various tracking scenarios based on the edge cost functions.

The structure of the paper is as follows: Section 2 will in detail present our
two-stage graph-based method for multi-object tracking. Experimental results on
real X-ray recordings of a beating sheep heart are presented in Sect. 3, including
qualitative results and a quantitative comparison to ground-truth data provided
by human experts. Section 4 concludes this work and discusses further plans.

2 Two-stage Graph-based Tracking

In this section we present our approaches for both extraction and linking of
tracklets. We assume to have access to calibration data and detections for the
individual views. The application of this approach to our medical scenario of 3D
marker tracking in X-ray sequences is described in detail in Sect. 3.

2.1 Tracklet Generation

In order to overcome the problem of trajectory occlusions and interactions, we
designed our tracking approach to directly operate on 3D data. We assume
to have access to 3D point hypotheses P t

0,P
t
1, . . . ∈ R3 reconstructed from

2D marker detections pt,Il0 ,pt,Ir0 ,pt,Il1 ,pt,Ir1 , . . . ∈ R2 obtained from left and
right images Il, Ir. Using these observations, we construct a landmark graph
G = (V ,E,w), where each node vti ∈ V represents one 3D point P t

i hypothesis.
These nodes are connected across neighboring frames t, t+ 1 by directed edges
ei,j =

(
vti,v

t+1
j

)
∈ E, and we obtain a bipartite graph topology as outlined

in Fig. 2a. Framewise misdetections are handled by creating additional edges
et,t+∆ti,j =

(
vti,v

t+∆t
j

)
across further time steps, which allows skipping certain

frames without appropriate detections. The assigned edge weights
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are proportional to the product of the Euclidean distance dspat(v
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j ) =
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i − P t+∆t

j ‖2 between the two represented 3D points and the number ∆t of



skipped frames. Additionally, we connect each vertex vti with the source vsource

and the sink vsink in order to obtain shorter tracklets when a marker was not
detected for longer times. The associated edge weights

wsource(v
t
i) = (t+ 1) · dpenalty and wsink(vti) = (tmax − t) · dpenalty (2)

are proportional to the product of the number of skipped frames and the average
linking distance to discourage unnecessary shortcuts.

Having such a graph G as exemplary outlined in Fig. 2a, a consistent tracklet
τ = (℘, tτ,0, tτ,1) from frame tτ,0 to frame tτ,1 can be obtained by finding a
path ℘ = (vsource,v

tτ,0 , . . . ,vtτ,1 ,vsink) from the source to the sink with minimal
cumulated weight. For this purpose we iteratively employ Dijkstra’s shortest
path algorithm [7] until a specified number of iterations is reached or no more
optimal paths can be extracted from the graph. Found paths are invalidated
by setting the weights of all outgoing edges to infinity for each node of the
path. In a post-processing step, missing observations between linked tracklets are
interpolated linearly. Furthermore, duplicate tracklets, i.e. tracklets with almost
identical spatial and temporal extents are merged.

2.2 Tracklet Linking

To fuse individual tracklets into complete tracks, we again formulate this problem
in a graph-based way. Each vertex v′i ∈ V ′ in the new tracklet graph G′ =(
V ′,E′,w′

)
represents a tracklet τi = (℘i, tτi,0, tτi,1) from frame tτi,0 to frame

tτi,1. All vertices are connected by directed edges e′i,j ∈ E′, which results in a
linear graph structure. The associated weights

w′i,j = w′(v′i,v
′
j) =

{
d′spat

(
v′i,v

′
j

)
· d′temp

(
v′i,v

′
j

)
tτj,0 − tτi,1 > 0

∞ else
∈ w′ (3)

are proportional to the product of spatial distances d′spat (vi,vj) = ‖P
tτj,1

i −
P
tτi,0
j ‖2 and temporal distance d′temp

(
v′i,v

′
j

)
= tτj,0 − tτi,1 between two repre-

sented tracklets. If two tracklets have a conflicting temporal order or overlap
in time, the edge is weighted with infinite costs. Again, each vertex v′i ∈ V ′ is
directly connected to v′source and v′sink with associated weights similar to those of
Eq. 2. In this case, paths ℘′ = (v′source,v

′
1,v
′
2, . . . ,v

′
sink) with minimal cumulated

weights within this tracklet graph G′ represent consistent sequences of tracklets
T = (℘′, tτ,0, tτ,1). The extraction of tracks is performed iteratively until no
optimal path can be found or a certain number of paths are found. In a further
post-processing step, gaps between linked tracklets are interpolated.

3 Experiments and Results

To assess the general performance and practical applicability of our proposed 3D
tracking approach, we conducted experiments on real-world X-ray recordings of a
beating sheep heart. Specifically, our goal was to analyze the following questions:



(i) Is our proposed method generally able to deal with the difficulties in this
application (e.g. 2D marker occlusions, non-distinguishable marker appearance,
inhomogeneous marker movement)? (ii) How does our method perform compared
to standard 3D tracking approaches such as particle filter based tracking for
the scenario at hand? (iii) Is the tracking accuracy of our approach comparable
to human experts, and are the results sufficient for medical analyses? In the
following, the experimental setup and the according results are presented.

3.1 Experimental Setup

The data used in our experiments was acquired by cardiac surgeons using the
biplanar X-ray system shown in Fig. 1a. It shows the beating heart of a sheep,
including 42 radio-opaque markers. The markers have a diameter of 2 mm and a
spherical (30 times) or cylindrical (12 times) shape. The recorded images have a
spatial resolution of 1024× 768 pixels and a temporal resolution of 500 Hz. The
total length of the sequence is 3,001 frames and covers 8 complete cardiac cycles.

For the calibration of the camera setup, we used a custom-built 140 mm×
60 mm× 0.5 mm radio-opaque steel plate containing 18 circular holes of diameter
5 mm. The holes can automatically be detected and identified in the resulting
X-ray images. We performed the calibration based on Zhang [21], yielding an
average backprojection error of 1.3 pixels. The angle between both cameras was
115◦, while the distance between each camera and the heart was about 825 mm.

For each camera, 2D detections were obtained by firstly finding discontinuities
in the images, e.g. using the Laplace operator. Afterwards, initial detections were
extracted using simple blob detection. To reduce the number of false positives,
saliency maps were built based on temporal variations throughout the whole
sequence. By triangulating all detection pairs of the two camera views which
were supported by the estimated epipolar geometry, we obtained 3D marker
hypotheses which were then used as input for our proposed tracking approach.

To evaluate the quality of the tracking results, we performed a comparison
to ground-truth data provided by human experts, which is available for every
10th frame and all uniquely identifiable markers (37 out of 42). We employ the
multiple object tracking precision (MOTP) and multiple object tracking accuracy
(MOTA) metrics [3], which have become the de facto standard in the field of
multi-object tracking evaluation. The former allows to assess the precision of
the tracker independently of correct object matches, while the latter provides
information about object misses, mismatches, and false positive tracks.

3.2 Tracking Results

We extracted 3,000 tracklets using the first stage of our algorithm. In the second
stage, we extracted all tracks whose length was at least 50% of the total sequence
length, resulting in 39 tracks. In order to assess the quality of our results with
respect to standard 3D tracking approaches, we performed a comparison to
the particle filter based tracking approach presented in [11]. To ensure a fair
comparison, we extended the method of [11] to 3D in a straightforward way (3D



Table 1: Multiple object tracking accuracy (MOTA) for the sheep heart sequence of our
approach and the 3D extension of the particle filter approach presented in [11]. While
the mismatch rate is equally low for both methods, our approach clearly outperforms
[11] in terms of false positives, misses, and MOTA.

Method Miss Rate False Pos. Rate Mismatch Rate MOTA

Our Approach 26.02% 6.23% 1.26% 66.49%
3D Extension of [11] 43.78% 16.22% 0.37% 39.64%
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Fig. 3: Quantitative results for the sheep heart sequence. (a) Multi object tracking
precision (MOTP) in comparison to the 3D extension of the particle filter approach
of [11]. While the precision is comparable for both methods, in six cases our approach
reliably tracks markers which can not be tracked by [11]. (b) Comparison to precision of
human experts for four markers having ground-truth data provided by multiple persons.

state vectors and updates instead of 2D). Furthermore, we used identical 3D
detections and selected the same amount of best tracks as for our algorithm.

The MOTA results of both approaches are shown in Tab. 1. It can be seen
that our approach has a moderate miss rate, while the false positive rate and
the mismatch rate are relatively low. This behavior can be explained by the fact
that the tracklet association step of our approach favors long and reliable tracks,
while short and unreliable tracks are discarded at the expense of full misses, i.e.
markers for which no track is present throughout the whole sequence. In the
medical scenario at hand, this property is to be favored, as it is more reliable to
have no tracks instead of wrong tracks for certain markers. While the mismatch
rate of the approach of [11] is even lower than for the proposed method, it is
clearly outperformed by our approach in terms of false positives and misses.

The results of MOTP evaluation are presented in Fig. 3a, separately for each
marker. Only results are included for markers whose ground-truth data could be
obtained and no full misses occurred. We can state that the average 3D precision
of our approach is about 0.2 mm, with only minor differences between markers. A
notable exception is marker 16, which is located at the end of a cardiac valve and
suffers from the very abrupt movements. The particle filter approach of [11] gives
comparable results on many markers. However, in six cases our approach is able
to reliably track markers which can not be tracked using [11]. Qualitative results,
namely 3D surface reconstructions for one cardiac cycle based on tracking results
of our algorithm are shown in Fig. 4.



Fig. 4: 3D surface reconstruction of the sheep heart sequence based on our marker
tracking results for one cardiac cycle (approximately 350 frames).

Given the qualitative and quantitative evaluations, it can be stated that our
approach is able to deal with the difficulties in the data and provides promising
results while outperforming standard 3D tracking approaches.

3.3 Comparison to Human Experts

In order to relate the tracking precision of our approach to human experts, for
four representative markers ground-truth data was provided by more than one
person. The results of the comparison are presented in Fig. 3b. In three out of
four cases, our approach is able to compete with the precision of human experts.
Only for marker 32, the human results are more precise, which might be caused
by the fact that the marker is partly occluded by an anatomical structure in one
camera view. All in all, however, we can state that the results are very promising
and indeed comparable to human experts. Thus, our approach is clearly suited for
practical applications. The fact that it can be used fully automatically supports
above argumentation, and shows its applicability for medical marker tracking.

3.4 Complexity and Runtime

The entire system was implemented in C++. Our method has a complexity of
O(k · (n log n+m)), where n is the number of nodes, m is the number of edges,
and k the number paths to be found in the respective graph. For the extraction
of 3,000 tracklets from a 1.16 × 106 node 3D detection graph, our algorithm
needs approximately 78 minutes, while the extraction of 39 final tracks from the
tracklet graph takes about 31 seconds. All measurements were conducted on a
standard desktop computer with an Intel R© CoreTM i5-760 CPU (2.80 GHz).

4 Conclusions

In this work, we presented a two-stage graph based approach for multiple marker
tracking in X-ray recordings of beating hearts. The first stage of our approach
consists of constructing a 3D observation graph, from which tracklets are extracted
via shortest path optimization. Similarly, in the second stage, full tracks are
found by constructing a tracklet graph. This process allows for a global linking
of detections and tracklets and can easily be adaptapted based on the edge cost
functions. We evaluate our approach on a sequence of a beating sheep heart and
achieve a results which are comparable to human experts.

As next steps, we would like to incorporate efficient motion models. Also,
adapting the edge cost functions based on additional knowledge such as occupancy
maps or geometric information could improve the tracking performance.
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