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Abstract

In this paper we describe an approach for an automatic evaluation system for
laryngoscopical image sequences. We describe how glottis segmentation in high
speed camera sequences can be done by using active rays. We show that active ray
contour segmentation provides a good base for useful feature calculation.

Afterwards we show how hidden Markov models (HMMs) can serve for a statis-
tical evaluation of the given feature vector sequences. The main advantage of the
HMM approach is the fact, that HMMs are able to supply both for classi�cation
and time segmentation of images of voice onsets showing functional disorders. There
exist several algorithms for parameter estimation and the models are robust against
single missegmentations.

Finally we describe how we can adapt the existing speech recognition system
\ISADORA" for our purposes.
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1 Introduction

A big supposition for classi�cation of functional disorders of the voice is knowledge about
the vocal fold vibration. Because of the high base frequencies of this vibration (between 80
and 400 Hz) it is not possible to recognize motions in real-time. The most frequent way to
cope with this problem is to work with laryngoscopes in combination with a stroboscopic
light source and video recording [8]. But with this kind of examinations it is only possible
to observate steady state vibrations.

High speed cameras, able to take up to 10000 frames per second provide a good pos-
sibility to analyze even non periodic vocal fold vibrations. In our work we use image
sequences of a high speed camera system developed at the Fraunhofer Institute for In-
tegrated Circuits in Erlangen in cooperation with the department of Phoniatrics of the
University Erlangen-Nuremberg. This system is described in [8].

Given such images the next step is analysis of the video stroboscopic or high speed
image sequences. Examination by an experienced doctor provides no quantitative results.
Computer based examinations of the movement of the vocal folds are shown in [6]. An
active contour based approach is used to detect position and shape of the vocal folds.
Our approach is to describe position and movement of the vocal folds by segmentation of



Figure 1: High speed glottography image sequence and single frame

the gap between them, the glottis. Detection is done by active rays [1], an active contour
like approach to contour tracking. Glottis segmentation is also done at the department
of Phoniatrics at University Erlangen-Nuremberg. But therea region growing algorithm
is used to detect the glottis area [8].

The result of the segmentation by active rays is a 1D feature vector sequence. In our
work those vectors are directly evaluated statistically by HMMs. There exist a lot of
robust algorithms for parameter estimation and evaluation. An advantage for us is the
fact that HMMs can be used for classi�cation as well as for time segmentation of feature
vector sequences. In speech processing HMMs have been used since the early 70's. Theory
of these models is described in [5, 3, 7] and [4].

In our case we adapt the speech recognition system \ISADORA" [7], which has been
been developed at the Chair for Pattern Recognition at University Erlangen-Nuremberg
since 1989, for our purposes.

2 Images

The High-Speed-Glottography-System we are working with provides a full frame resolu-
tion of 128 by 128 pixels with a maximum speed of 1025 frames per second. Recording
speed can be increased by reading only every second, fourth or eighth row from the cam-
era's CCD{Chip.

In this case the resolution of the images is increased up to 128 by 128 pixels before the
segmentation step by repeating existing lines, so that the following process is independent
of the chosen camera resolution. For detailed information about the camera system see
[8].

Figure 1 shows an image sequence and a single frame produced by such a system. The
most interesting part for us, the glottis, corresponds to the dark area in the middle of the
single picture framed by the vocal chords left and right. At the bottom of the image you
can see the epiglottis which closes the respiration tract during swallowing.

3 Functional Voice Disorders

One task of phoniatrics is recognition and distinction of functional voice disorders (Dis-
phonies). A �eld of special interest is di�erentiation between hypo- and hyper-functional
disorders. The phase of beginning phonation, the voice onset, provides characteristic
features for this two cases [2].



contour C

vm(�)

m

�

�m(�; �)

Figure 2: Principle of one active ray.
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Figure 3: Representation of a contour by
active rays.

The voice onset can be departed into four di�erent phases closing of the vocal folds,
prephonetic glottis closure, beginning vibration and steady state vibration.

Duration of prephonetic closure and beginning vibration phases can indicate functional
disorders [8].

In our work we want to build up a system which automatically evaluates high speed
image sequences of vocal fold vibrations and is able to classify hypo- and hyper-functional
disorders.

4 Active Rays

To detect the interesting sections in the image sequences we need information about the
moving of the vocal folds. Therefore we are looking for points on the outer borders of the
glottis. Active rays provide a good means to detect those points. This section is based
on description of active rays in [1].

An active ray %m(�; �) is de�ned on the image plane (x; y) as a 1D function depending
on those gray values f(x; y) of the image, which are on a straight line from the image
point m = (xm; ym)

T in direction �

%m(�; �) = f(xm + � cos(�); ym + � sin(�)); 0 � � � n�; (1)

where n� is given by the image size. The principle is clari�ed in Figure 2. The angle � is
measured counter clockwise.

Now, a contour point in direction � regarding a given reference point m can be de-
scribed by the parameter �(�) � 0

�(�) = argmin
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i.e., we are looking for points on the active ray with a maximum edge strength. The
contour point cm(�) (see Figure 2) is then

cm(�) = (xm + �(�) cos(�); ym + �(�) sin(�)); 0 � � < 2� (3)

A similar representation is used by the generalized Hough transform. In the discrete case
the whole contour can be computed by de�ning a sampling step size4� for �. This allows
for di�erent accuracy of the contour representation. An example for a representation of
a contour is shown in Figure 3. The sampling step size 4� is �=4.

Now, we have to discuss the choice of the reference point m. In principle, every
point within the object's contour is possible. But to have a unique point, which can be



precalculated by a prediction step, the center of gravity of the contour extracted by the
active ray is used in the following, i.e., the equation

m = 1=2�
Z

2�

0

cm(�) d� (4)

should hold for the reference point m. For convex contours m will also be the center of
gravity of the object's contour. What happens, if the chosen reference point is not the
center of gravity? Then, we can calculate a new reference point using the formula (4).
After that, the new contour representation has to be calculated.

We have noted that the approach of active rays allows for multiple hypotheses. For
this, we have to look for the i best solutions of equation (2), which means, that for each
ray in direction � we get a set �(�)
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of possible solutions for the contour instead of one single contour element.
We can build up a glottis segmentation system with the assumptions (according to [8])

that in its open state, the glottal area can be modelled as one uniform, dark segment, the
darkest area in each single frame is assumed to be part of the glottal frame, the glottis can
be seen in every single frame and the gray value of the darkest point in a frame showing a
opened glottis is less than the gray value of the darkest point in a frame showing a closed
glottis.

The system includes the following steps for every single frame. At �rst, detection of
the area with minimum gray value is done. Based on this area, the decision whether the
glottis is closed or not, i.e. whether the frame is to be processed or not is made. Then, if
the frame is to be processed, the glottis contour is extracted by active rays. Fianlly the
edge points are selected out of the calculated hypotheses.

For the computation of the area with minimum gray value we are moving a 3x5
window over the whole frame. The sum of the gray values serves as an energy function.
The coordinates of the energy minimum are used as reference point m for the active rays.

The value of the energy minimum can serve as a basis for decision whether the glottis
is closed or not. Frames showing a closed glottis need not to be processed anymore. The
value is compared with the average minimum energy value of the last 20 frames. We
assume glottis closure when the actual value is higher than the average value and vice
versa (see assumptions).

This works well when there is a vibration of the vocal folds. When we start to process a
new frame sequence, we have to precalculate the energy minimums of the �rst 20 frames,
to get a reliable average value. If we have to process a frame, the coordinates of the
minimum energy are chosen as the reference point m of the active rays.

We chose the image gradient�
��� d
d�
%m(�; �)

���2 as our energy function. With this function

and the reference point m we calculate three hypothesis per ray, i.e. we choose the three
strongest edge points on each ray in our set of hypotheses �(�) . Because there is a strong
edge at the glottis border, we assume that this edge point is included in the set. We chose
the edge point with minimum �(�), that means minimum distance from the reference
point m as contour point.

We chose those distances ci = �(�i) as parts of our feature vector o when examining
i rays.

Figure 4 shows how the feature vectors o are calculated out of the images by using
active rays .
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Figure 4: Extraction of feature vectors using active rays

5 Hidden Markov Models

In the section before we have shown how to get feature vectors o out of each single frame.
Now we have to �nd a system to evaluate feature vector sequences O = o1 � � � oi � � � on

computed out of an image sequence. A statistical solution is provided by the HMMs.
In this section we will describe the theory of the HMMs, how we can use them for

classi�cation and time segmentation of laryngoscopical image sequences and how we can
adapt the existing speech recognition system \ISADORA" for our purposes.

Please note that both, active rays and HMMs use the mathematical symbol � in their
descriptions. So please don't mix up the lambdas in this section with the lambdas in
previous sections.

5.1 Hidden Markov Models - Theory

The behavior of a HMM � can be described by a �nite automaton with states S =
fS1; S2; � � � ; SNg and transition probabilities aij = P (st = Sjjst�1 = Si) with aij � 0 andP

N

j=1
aij = 1 for 1 � i � N . Those transition probabilities can be embraced in the matrix

A = (aij). The vector � = (�i) with �i = P (s1 = Si); 1 � i � N includes the starting
probabilities.

To simulate time dependent processes we limit the transition probabilities by aij =
0; 8i > j. This secures that a state which has been left can not be reached again. Those
models are called \Left{Right{Models". In addition we force the process to start in state
S1 by setting � = (1; 0; � � � ; 0)T . Because of the restrictions state SN never can be left due
to aNN = 1.

Each time t the automaton takes a new state (even if it's the same state as at time
t � 1) it produces a symbol ot out of the �nite alphabet O = fO1; O2; � � � ; OKg with
production probabilities bjk = bj(Ok) = P (ot = Okjst = Sj) for 1 � j � N; 1 � k � K

with bjk � 0 and
P

K

k=1
bjk = 1. Production probabilities can be combined in the matrix

B = (bjk).
A HMM � can be described completely by the parameters A;B and �. Now there are

three interesting questions concerning HMMs:

1. How big is the production probability P (Oj�) that a HMM �(A;B;�) produces the
given symbol sequence O = o1o2 � � � oT ?

2. Which is the most probable state sequence S = s1s2 � � � sT for given HMM �(A;B;�)
and symbol sequence O = o1o2 � � � oT ?



3. How to estimate the parameters of a HMM �(A;B;�) out of a given symbol sequence
O = o1o2 � � �oT ?

For each of this problems exist one or more useful solutions. The production probability
can easily be calculated by the so called Forward-Backward-Algorithm. The most probable
state sequence is obtained by the Viterbi-Algorithm and for parameter estimation there
exist two e�cient methods: the Baum-Welsh-Training and Viterbi-Training.

Descriptions of the algorithms above can be found in [5, 3, 4] and [7].

5.2 Classi�cation and Time Segmentation

For the purpose of time segmentation, we can build up elemental HMMs for each inter-
esting phase of our vocal fold vibrations. That means we are modeling glottis closing,
prephonatoric closure, beginning vibration and steady state vibration as elemental or
atomar models.

Based on these models we can de�ne a general model by melting the elemental models
together. This is done by introducing a transmission probability aN112

when melting
elemental models �1 and �2.

Parameter estimation can be done also by training the elemental models with hand-
segmentated feature vector sequences as by training the complete model with complete
feature vector sequences. Training with segmentated data works quite better but you
have to spend time on labeling the vector sequences.

The most probable state sequence supplied by the Viterbi-Algorithm indicates the
time behavior of the interesting phases.

For classi�cation of functional voice disorders we can de�ne an elemental HMM for
every interesting class, e.g. hyper and hypo functional disorders. These models are trained
with complete sequences and classi�cation decision is based on the production probability
for a new sequence of each of the interesting models. We decide on the class with the
highest production probability.

Another possibility is to combine both approaches by building up a larger alphabet of
elemental models. For each of the models, which are signi�cant for the estimated classes
the afore mentioned models are replaced by class{speci�c new ones. In our case we for
example replace the model of beginning vibration by a model of beginning vibration for
hyper-functional disorders and a another model of beginning vibration for hypo-functional
disorders. Models representing phases in which we dont expect di�erent behavior like the
model of steady{state vibration can be left in our alphabet as common models.

We then build up class speci�c general models out of elemental models. Training can
also be done with segmentated and unsegmentated data. The advantage of such kind of
models is, that classi�cation and time segmentation can be combined: after deciding for
the model with biggest production probability (classi�cation) for a new feature vector
sequence we use the Viterbi-Algorithm to calculate the most probable state sequence
(time segmentation).

5.3 ISADORA

The speech recognition system ISADORA [7] provides all possibilities for building up
elemental and combined HMMs, training and evaluation. So we can use this system to
test out and build up all described features in this section.



6 Experiments and Results

First experiments for glottis tracking and time segmentation with active rays and HMMs
have been conducted. We used 43 complete sequences showing simulated hyper- and hypo{
functional disorders and tried to segment the boundaries of glottis closing and closure.

Therefore we tracked the glottis during the whole sequences by applying 90 active
rays, calculated 3 hypotheses per ray and evaluated by hand. As a result we tracked 33
(76.7%) sequences good and 7 (16.3%) wrong. The remaining 3 (7.0%) sequences were
also tracked correctly except for a short period of time at the beginning of the sequence.
A result of glottis tracking can be seen in Figure 5.

Figure 5: Results for tracking the glottis with active rays

To evaluate the time segmentation, we chose 14 out of the 90 rays and applied a
normalization step to reduce inuence of the glottis size and the angle of the main axis.

For each of the 36 above mentioned sequences we trained an own HMM network
with the remaining data, calculated the interesting time boundaries and compared them
against hand segmented values. We received an average deviation of 42.4 ms. In a few
cases the correct boundaries have not been detected. Diagrams in Figure 6 show deviation
of automatically calculated from manually segmentated boundaries in 20 ms intervals on
the x-axis and the number of boundaries found in the corresponding interval on the y-axis.
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Figure 6: deviation of automatically segmentated from manually segmentated boundaries
for the end of glottis closing (left) and end of glottis closure (right).

7 Conclusion and Future Work

In our contribution we have presented a new approach to glottis tracking by using active
rays. Experiments have proven that this trial is well suited for an accurate glottis contour



extraction.
In addition we introduced hidden markov models as a means to evaluate feature vector

sequences provided by active rays. Major advantage of those models is that time segmen-
tation and classi�cation can easily be combined in one system. Existing systems can be
adapted for our purposes without big problems.

sequence
image

vibration phases
HMM. .

 .

. .
 . ... . .
 .Active

Rays

feature vector
sequence

segmentated

Figure 7: Overview about the system

An overview of the complete system can be seen in Figure 7. In our current work we
are testing out the HMMs with results provided by glottis tracking using active rays. If
our system shows good classi�cation and time segmentation of hyper- and hypo-functional
disorders we will extend classi�cation to classes like paralyses of the vocal folds.
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