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ABSTRACT

Multi-modal image registration is a crucial step when fus-
ing images which show different physical/chemical proper-
ties of an object. Depending on the compared modalities and
the used registration metric, this process exhibits varying re-
liability. We propose a deep metric based on a fully convo-
lutional neural network (FCN). It is trained from scratch on
SAR-optical image pairs to predict whether certain image ar-
eas are aligned or not. Tests on the affine registration of SAR
and optical images showing suburban areas verify an enor-
mous improvement of the registration accuracy in comparison
to registration metrics that are based on mutual information
(MI).

Index Terms— Remote Sensing, SAR-optical Image
Registration, Fully Convolutional Network

1. INTRODUCTION

Fusing images taken by different sensors leads to an increase
in information density and allows spatially-resolved compar-
ison of different physical/chemical properties of a viewed ob-
ject. For accurate fusion, it is crucial to achieve spatial align-
ment between those images. Multi-modal image registration
is therefore a challenging task in a wide variety of topics, in-
cluding medical science, computer vision and remote sensing.

While SAR images can be taken independent of sunlight
or cloud coverage and with higher spatial resolution than
optical remote sensing images, SAR images are harder to
interpret. Fusion of SAR and optical images enables geo-
localization refinement of optical remote sensing images [1],
as well as giving new possibilities of learning SAR image
interpretation [2].

As SAR and optical sensors measure with different wave-
lengths and are using different viewing angles, the result-
ing images look very dissimilar w.r.t. shadowing effects and
spatial intensity distribution. Consequently registration met-
rics based on information theory, e.g. Kullback-Leibler di-
vergence or MI, may not be reliable when registering SAR
and optical images. We propose a deep metric which is able
to detect misaligned areas of a SAR-optical image pair in a
spatially-resolved manner. To this end, we convert the task

Fig. 1: Scheme of the proposed deep metric. The concate-
nated input of the FCN consists of a fixed optical image and
a SAR image which is transformed during registration. The
scalar deep metric value is calculated by the averaging of the
spatially-resolved output of the FCN that predicts the align-
ment of its input channels.

of evaluating the alignment of two images into a binary seg-
mentation task, estimating whether or not the corresponding
areas of SAR and optical images are aligned. The deep met-
ric is tested on affine transformations including translations,
rotations and scaling.

Due to the fact that the network is fully based on con-
volutions [3], it is possible to use it regardless of the size of
the compared images, with the constraint that the compared
images must have the same size. As shown in Figure 1, the
FCN provides a two-dimensional output, in which cells con-
tain a spatially-resolved prediction of the alignment of their
receptive field. A scalar deep metric value for an image pair
is calculated through average pooling.

2. RELATED WORK

Although there a number of publications studying deep learn-
ing methods for segmentation, multi-modal image fusion, and
multi-temporal change detection of remote sensing images
[4, 5, 6, 7], deep learning is unpopular in SAR image pro-
cessing, mainly because of the limited amount of available
data [8].



There are two public data sets containing aligned SAR
and optical images: the SARpital data set proposed in [9],
which was created through three-dimensional reconstruction
of the measured areas [10], and the SEN1-2 data set [11],
which we use for training and registration.

The FCN-based concept of deep image registration met-
rics, which are usable for non-rigid registration, has been pro-
posed in [12]. There, a three-dimensional FCN is trained on
spin-lattice- and spin-spin-relaxation MRI scans, predicting
whether or not corresponding scan volumes are aligned. We
adapt this concept and adjust it to remote sensing data, using
a patch-wise training method as proposed in [13].

The FCN presented in [12] is a progression of [14], where
CNNs are used to predict whether two images show the same
object. As shown in [15], the CNNs that were introduced in
[14] can be adapted to predict whether SAR and optical im-
ages show corresponding objects. To the best of our knowl-
edge, our approach is the first using an FCN as a deep metric
for SAR-optical image registration.

Instead of training a deep metric, [1] proposes directly
predicting the displacement between SAR and optical images.
Unlike our approach, it is only capable of image registration
w.r.t. shifts.

3. EXPERIMENTAL RESULTS AND DISCUSSION

3.1. Data selection and pre-processing

We select 7,100 image pairs for training, as well as 2,600 for
validation and 200 for image registration tests. We use a sub-
set of the SEN1-2 ’Spring’ data set which is structured ac-
cording to the regions shown in the SAR and optical images.
The three subsets show different regions of the Earth’s surface
to guarantee data independence.

Optical images are transformed into grayscale images. A
Lee filter with kernel size 5 is used on SAR images to reduce
speckle noise [16]. Images of both types are normalized w.r.t.
mean and variance.

3.2. Architecture and Training

The general structure of the deep metric is shown in Table 1.
While linear activation is used on convolutional layer 6, the
layers 1 to 5 contain Leaky-ReLU activation functions with
α = 0.1. SAR and optical images are concatenated to create
an input with dimensions x × y × 2, whereby the minimum
size for each dimension x and y is 37.

The FCN is trained patch-wise on paired SAR and optical
patches of size 37× 37× 2. We randomly select image pairs
from a set of perfectly aligned multi-modal images. For each
pair we crop a 37×37 area out of each image and concatenate
them to a multi-modal patch. We constrain that 50% of the
multi-modal patches have to show exactly the same area in
each modality channel. Those are labeled with 1. The other
50% show areas which are displaced by a random number

Table 1: FCN architecture used for training with concate-
nated input images of size x = y = 37.

Name Kernel / Stride Output size / Channels

Conv. 1 5,5 / 2 37,37 / 512
Conv. 2 5,5 / 2 17,17 / 512
Conv. 3 3,3 / 2 7,7 / 512
Conv. 4 3,3 / 1 3,3 / 512
Conv. 5 1,1 / 1 1,1 / 512
Conv. 6 1,1 / 1 1,1 / 1

between 1 to 10 pixels along x and y axis and were labeled
with −1.

The training is run for 4 million iterations with batchsize
128, using SGD with a momentum of 0.9, a learning rate of
10−2 and a weight decay of 10−4. We use a hinge loss, where
l and l̂ are the real and estimated patch labels and n is the
batch size, defined as follows:

HL(l, l̂) =

∑n
i max(0, 1− li · l̂i)

n
(1)

To further characterize the training, the percentage of cor-
rectly assigned samples per batch is calculated. Correct as-
signment is defined by whether or not a negative label for
misaligned or a positive label for aligned multi-modal patches
is predicted correctly. After training, the network achieves a
hinge loss of 0.45, assigning 78% of the patches correctly.

In contrast to results presented in [14], the usage of
pseudo-siamese layers does not improve the network perfor-
mance, as splitting layers leads to an oscillation of the loss
function during training.

3.3. Image Registration

We randomly select 200 aligned multi-modal image pairs to
investigate the registration performance of the deep metric.
The set of test pairs is created by transforming the SAR im-
ages. Transformation parameters are taken randomly out of
an interval of −6 to 6 pixels for translation, degrees for rota-
tion and percent for scaling. Misalignment by translation is
only applied along the x-axis.

We implement the actual registration task as a grid search,
searching for the parameters needed to transform the SAR
images back to their original state, using the optical images
as a fixed reference. The grid has a distance between the grid
points of 1 pixel for translation, 1 degree for rotation and 2
percent for scaling. 3,375 parameter constellations are tested,
corresponding to 15 different values for each transformation
parameter.

For comparison, identical tests are performed on our deep
metric, the MI and the normalized mutual information (NMI)
with 64 bins [17]. NMI is implemented as follows, where



Fig. 2: Mean registration error ∆θ̂ for translation, rotation,
and rescaling using the deep metric with and without Zero
Padding, compared to NMI and MI.

Fig. 3: Distribution of the translation registration error of the
deep metric and the NMI.

H(X) and H(Y ) is the entropy function of two images X
and Y , while H(X,Y ) is their joint entropy:

NMI(X,Y ) =
H(X) +H(Y )

H(X,Y )
(2)

Metrics are calculated on a patch containing central im-
age areas with size x = y = 157 after each step of the grid
search. In addition to using the described deep metric, we test
an approach where zero padding of (18,18) ia applied to the
patch before calculating the metric. This enlarges the num-
ber of receptive fields used by the FCN, without adding new
information. We further use average pooling over the whole
two-dimensional output to create a scalar deep metric value,
after skipping values larger than 1 or smaller than−1, replac-
ing them with 1 or −1.

We define the constellation of back-transformation pa-
rameters which lead to the highest metric value as the pre-
dicted registration parameter set θ̂. As the true registration
parameters θ∗ are known during testing, performance is eval-
uated by the mean registration error ∆θ̂, which is calculated
as follows, where N is the number of registered pairs:

Table 2: Comparison of the registration accuracy of different
metrics. The registration accuracy is defined by the percent-
age of image pairs for which a registration error below certain
threshold is achieved.

Methods Registration Accuracy
≤ 1 px ≤ 2 px ≤ 1◦ ≤ 2%

MI 53.0% 69.0% 68.5% 69.0%
NMI 54.0% 69.5% 68.5% 69.5%
FCN 89.5 % 91.0% 91.0 % 92.0%

FCN+Z.P. 90.0 % 93.0% 96.5% 96.0%

∆θ̂ =

∑N
i |θ∗ − θ̂|
N

(3)

As shown in Figure 2, the deep metric outperforms MI
and NMI. Individual zero padding before calculating the deep
metric further increases its registration accuracy w.r.t. predict-
ing rotation and rescaling parameters. With zero padding the
deep metric leads to a reduction of ∆θ̂ by a factor of c. 3
for translation parameters and a reduction by factor c. 6 for
rotation and rescaling in comparison to the NMI.

As demonstrated in Figure 3, the deep metric predicts
mostly small misalignment, while the results of MI and NMI
are widely spread. The results shown in Table 2 confirm that
our method is achieving registration errors of at the most 1
pixel, 1 degree or 2 percent in about 90% of cases.

We also test another method of creating training patches.
Instead of only misaligning 50% of the training patches la-
beled with −1 by random displacement, we also use random
rotation and rescaling. This leads to a worse registration per-
formance. Further, applying only displacement in 37.5% and
displacement, rotation and rescaling in 12.5% of the cases
leads, in comparison, to a decrease of the registration per-
formance. Correctly predicting translation parameters is still
the biggest weakness of our approach. Rotation and scal-
ing parameters can still be predicted with relatively high ac-
curacy by an FCN which is only trained on aligned or dis-
placed multi-modal patches. In consequence, we recommend
skipping misalignment through rotation and rescaling during
training.

4. CONCLUSION

In this paper we proposed a deep metric which is capable of
predicting the alignment of SAR and optical image areas in
a spatially-resolved manner. By using average pooling we
created a scalar metric value which describes the alignment
of a SAR-optical image pair.

We tested our method on affine registration of remote
sensing data of suburban areas. The registration was im-
plemented as a grid search, using translation, rotation and



rescaling. For comparison, equivalent tests were done using
MI and NMI as registration metric. The results show that our
method is outperforming MI and NMI by far, as it is more
robust and more accurate.

As our network is fully based on convolutions, it is usable
regardless of the size of a multi-modal image pair. Further-
more, although only affine registration was investigated, the
deep metric should be capable of non-rigid image registration
due to its spatially-resolved functionality.

Only a small subset of SEN1-2 was used for training
and validation of the FCN, as we focused on suburban areas.
Training our network on a larger subset also including un-
settled terrain could further improve the applicability of our
approach.
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