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ABSTRACT

In this contribution we present how techniques from computer graphics and computer vision can be combined to

�nally navigate a robot in natural environment based on visual information. The key idea is to reconstruct an image

based scene model, which is used in the navigation task to judge position hypotheses by comparing the taken camera

image with a virtual image created from the image based scene model. Computer graphics contributes to a method

for photorealistic rendering in real{time, computer vision methods are applied to fully automatically reconstruct

the scene model from image sequences taken by a hand{held camera or a moving platform. During navigation, a

probabilistic state estimation algorithm is applied to handle uncertainty in the image acquisition process and the

dynamic model of the moving platform.

We present experiments which proof that our proposed approach, i.e. using an image based scene model for

navigation, is capable to globally localize a moving platform with reasonable e�ort. Using o�{the{shelf computer

graphics hardware even real{time navigation is possible.
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1. INTRODUCTION

In the past three years it could be observed that computer vision and computer graphics are moving close together.

Augmented reality is an active research area, where both communities need each other. In this paper we present

another area where topics usually found in computer graphics | namely the so{called image based rendering technique

| are an important part of a classical computer vision task | namely visual navigation of an autonomous mobile

system. The contribution of our work is, that we show

1. how an image based scene model can be used to create synthetic but nevertheless photorealistic images in

real{time, taken from any virtual viewpoint,

2. that our image based scene model is capable also to model specular re
ection and geometric structure in the

world, where the use of a geometric model (for example CAD model), is almost impossible, and

3. how virtual views of the scene can be used to globally localize a moving platform with high accuracy based on

visual information using a probabilistic localization approach.

The image based scene model that we use will allways need the position and projection parameters of the hand{held

camera for each frame of the input sequence. To get them, structure from motion techniques can be applied. In

previous works1,2 we have shown, how to extend the methods known from literature to be able to handle especially

the case of image sequences consisting of hundereds of images, which are necessary when recording light �elds.

Our results can be used in several ways. First, the image based scene model can be used to predict the appearance

of the scene assuming a certain position of the camera in the world. This includes also existence of certain features

(light straight line, corners, etc) dependent on the viewpoint, for example in the case of specular re
ections. In our

work we concentrate on the scene model; the features that are used for localization of the robot are based on the

whole image, i. e. we compare pixel by pixel the image which has been predicted, with the image, which is seen
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by the camera. Secondly, because of the scalability of the quality and resolution of the scene model, the approach

can be used either for global localization, when almost no information about the position of the robot is available,

or for local re�nement of an position estimate. The latter one might be necessary for navigating between doors

or accurate docking tasks. Third, our work can be used in any environment, where a classical geometric model is

diÆcult to reconstruct or almost impossible. And �nally, the image based scene model can be ideally combined with

any other state estimation problem besides localization and navigation, where some information extracted out of the

image must be compared with the expectation given a certain state estimate. Thus, the model �ts optimally into

the framework of probabilistic state estimation using particle �lters.

The approach presented in this paper is related to and motivated by two previous publications of other authors

on probabilistic localization and visual navigation. In the paper of Fox, e. a.3 an approach has been presented for

probabilistic self{localization of a mobile system based on classical robotic sensors. The approach was extended in

the work of Dellaert, e. a.4 to visual information from the ceiling of a museum. In that class of probabilistic methods

the observation model | spoken in terms of statistics the likelihood of observing information given the current state

of the system | must be evaluated repeatedly. This means for visual navigation that features computed in the

camera image must be compared with features which would have been observed if being at a certain position. The

comparison in combination with the a priori information of being at a certain position leads to the a posteriori

probability of the position. Self{localization then means maximizing the a posteriori probability with respect to the

unknown position.

In the work of Dellaert4 a map of the ceiling is manually built and for each position the corresponding camera

image was rendered. This can be done without much e�ort, because the camera points perpendicular to the ceiling.

As a result the degree of freedom of the system is three, i. e. the movement in a plane parallel to the ceiling and

rotating around an axis which is parallel to the optical axis. Having such a con�guration, the rendered images depend

only on the position of the system and the rotation angle, since the distance to the ceiling is known and constant.

This makes rendering fast and map representation as simple as possible.

In our work we extend this approach by using the idea of the so{called light{�eld or lumigraph approach.5,6 In

order to represent a scene, no explicit and complete geometric model needs to be constructed. In contrast, the scene

is represented by a certain amount of images together with an in accuracy scalable, local geometric approximation

. With this representation photo{realistic e�ects like mirroring or specular re
ection can be modeled even for very

complicated objects, where geometric modeling is very diÆcult or nearly impossible. Having such an image based

model of a scene certain algorithms exist for fast rendering of new and yet unsighted views. This means that given an

arbitrary position in the world, the corresponding image which would be seen by the camera can be computed. This

is exactly the demand for visual navigation, where no �xed or known relationships for the camera/scene con�guration

exist. Another advantage is that the light{�eld, i. e. the model of the scene, can be reconstructed automatically

without user interaction by methods from structure from motion.1

The idea and the structure of our paper is the following. First a light{�eld is reconstructed by using only a

very rough or no geometrical approximation, computed automatically by the approach described in a paper of Heigl,

e. a.7 (Section 2). During self{localization, particle �lters are used which propagate the conditional probability of

being at a position in the world given the observed data (Section 3). Section 4 describes how to bring together

these two approaches for the task of visual navigation. In Section 5 we present experimental results for docking a

robot to a certain position in the world based only on visual information and a model of the world presented by

the automatically generated light{�eld. The results show at least, that our image based model is accurate enough

to outperform localization and navigation based on odometry information. The paper ends with a summary and an

outlook to future work (Section 6).

2. IMAGE BASED MODELING AND RENDERING

For visual robot navigation, we need a powerful visualization model which can be acquired easily and which can be

used to render views in real{time. As we don't want to restrict our environment to special geometric, surface, or

illumination properties, we need a model which is able to create photo{realistic views in spite of complex geometry

and specular e�ects.

One concept ful�lling these requirements is the so{called light{�eld5 or lumigraph6 approach, which is an image

based method for visualizing scenes in real{time. The main idea is the following. If a single view is taken from a

scene, it can be interpreted as a bundle of viewing rays coinciding in the projection center of the camera. Having
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Figure 1. The light{�eld data structure. A viewing ray is parameterized by a quadruple (u; v; s; t). For each viewing

ray a color value is stored.

many of such scene views, one gets a more or less dense sampling of all possible viewing rays within the scene. To

render new virtual views, the required viewing rays must be interpolated from the discrete sampling. If information

about scene geometry is known, it can be used to improve the interpolation. In contrast to geometry based methods,

this approach implicitly handles non{Lambertian e�ects like mirroring and specularities and even complex geometries

like fur and hair.

The light{�eld data structure provides a discrete 4{D parameterization of viewing rays by connecting discrete

grid positions on two �xed parallel planes. Figure 1 shows such a con�guration. On each plane, a local coordinate

system is de�ned, which is able to address each point by two coordinates s; t or u; v, respectively. A quadruple

(u; v; s; t) speci�es one point on each of the two planes. The intersection line between those points corresponds to

the according viewing ray. Usually, these coordinates are integer values and therefore only �xed discrete samples of

viewing rays can be stored in a given data structure of this type. There exists a special interpretation of the two

planes which is useful when creating a light{�eld from real camera images. Suppose the case that the grid points on

the st-plane are projection centers of cameras. By connecting one st-point with any grid point in the uv-plane, all

viewing rays of the camera view are speci�ed which correspond to a pixel color value.

This �xed spatial arrangement requires either that the camera view points are ordered in a grid or that this �xed

data structure has to be resampled from arbitrary views. The �rst alternative is diÆcult to achieve, as it requires a

complicated technical equipment for moving the camera. The second has the disadvantage, that image information

has to be resampled twice: �rst for resampling the data structure and second to render a virtual view. Furthermore,

one has to choose a �xed sampling resolution for all images, which leads to subsampling or oversampling e�ects.

To avoid all these disadvantages caused by using the light{�eld data structure, we have developed a new method

for rendering virtual views directly from real camera views.7 Depth information given by local depth maps can be

considered to improve rendering quality in an adjustable quality.

The basic principle of the method is the possibility to project points of a plane into a camera by a single 3� 3

projective mapping matrix B. This process also can be reverted so that each pixel of an image is projected onto a

plane by multiplication of its coordinates with B�1. Having a real camera (subscribed with the image number i)

and a virtual camera (subscribed with V ), the whole mapping from the real camera to the virtual one via a given

plane can be calculated by the multiplication with the 3� 3 matrix BVB
�1
i . Figure 2 visualizes this procedure.

If the scene surface corresponds to this plane and the surface is Lambertian, this mapping will result in an optimal

rendered view. Notice, that if the virtual view point is near the view point of the real camera, even specularities

and small deviations of the plane from the true geometry a�ect the rendered view just slightly. This e�ect can be

exploited when having many real views from many di�erent view points by suitably weighting those real camera

views which are most adjacent to the virtual view.



Figure 2. Mapping a camera im-

age into a virtual view via a given

plane.
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Figure 3. Drawing triangles of neighboring projected camera centers. The

scene geometry is approximated by a single plane.

To determine these neighboring real cameras, their projection centers are projected into the virtual camera and

transformed to a net of triangles by Delauny{Triangulation. Within one such triangle, parts of those images are

superimposed which correspond to the triangle corners. In the implementation each triangle is drawn for each

contributing image once, therefore three times. To get the corresponding pixels, the upper described transformation

is applied backwards resulting in the transformation matrix BiB
�1
V . The weighting factor of each overlayed triangle

is 1 at the corner which corresponds to the contributing image and 0 at the others. In between the weighting factors

build a 
at ramp, similar to Gouraud Shading.

In the simplest case we can use a single plane to approximate the scene surface for the upper described mapping

process. This may result in ghosting artifacts at those parts of the surface, where the scene geometry largely deviates

from this plane. To reduce this e�ect, approximating triangles can be used instead of one single plane.

The corners of these triangles can be calculated from a depth value which is available by a simple look{up in the

depth map corresponding to a real camera. The principle can be seen in Figure 3. The connection lines of the virtual

camera center with each camera center of the recording positions are intersected with the scene surface resulting in

a corner of an approximating triangle. To get this intersection point, we can use the distance of a recording camera

to the scene in that viewing direction which is given by the upper noticed connection line. This distance can be

determined by a simple look-up in the depth map corresponding to the real camera view.

The single triangles of the projected net may become very large if the virtual camera is situated very close to

the recording positions and as a consequence, the 3-D triangles also cover large parts of the scene surface and the

approximation of the scene geometry becomes worse. To avoid this e�ect each triangle can be subdivided further by

inserting three new points at the medians of the sides.

By this procedure, the reconstructed scene surface changes with the change of the virtual view point. This

approximation covers adaptively exactly all those parts of the scene geometry which are relevant to the actual view.

For example, invisible concavities are not reconstructed. So the costs to render the triangles are reduced enormously

compared to the case, when using a consistent geometrical model for all virtual viewing points commonly.

Notice, that the whole method also is applicable without any changes, when the virtual camera is situated between

the recording positions and the scene. In this case, the same formulas for mapping are applied. The camera centers

of the recording positions are projected by the usual multiplication with the projection matrix, ignoring the fact,

that the projected point then lies behind the virtual camera, resulting in a mirrored projected triangle net. This

triangle net exactly re
ects which real views contribute to a given image pixel in the same sense as mentioned above.

3. PROBABILISTIC SELF{LOCALIZATION AND NAVIGATION

In the this section, we summarize a framework for probabilistic localization, basically in accordance with the work

of Dellaert, e.a..4 Knowing the position of the robot in world coordinate system, a sequence of small motions of



the robot to a prede�ned goal position can be done followed again by a self{localization. We will denote this loop of

localization and movement as docking mechanism.

3.1. The Framework

In the previous section we have introduced an image based scene model. The scene model is now applied to vision

based localization of a mobile platform. Vision based localization means, that based on an image ot taken at time

step t the position and heading xt of the moving platform is estimated. An advantage of localization of a moving

platform is, that information of the relative change of position and heading mt is available, too. This relative

movement information usually comes from the odometry of the moving platform. Odometry is a very accurate cue

in the sense of small, relative motions, but highly inaccurate in a global sense.

The described localization problem can also be seen as a state estimation problem of a dynamic system. The

dynamic is given by the performed motionmt at time step t. The state is the position and heading xt of the platform.

The observation is the image taken at time step t. Since each of these quantities, i.e. the motion and the observation,

are usually disturbed by noise, we de�ne them as random variables. The main goal is to estimate the position of a

robot given a sequence of actionsmt each of them followed by observations ot. Written in a probabilistic framework

we seek for the most likely position

x
�

t = argmax
xt

p(xtjHt) (1)

= argmax
xt

1

c
p(otjxt)

Z

xt�1

p(xtjxt�1;mt)p(xt�1jHt�1)dxt�1 (2)

where Ht = fmt;ot;mt�1;ot�1; : : : ;m0;o0g is denoted as the history at time t. The step from (1) to (2) arises

from applying the Bayes rule (with c being a normalizing constant independent of the argument xt) and assuming

a Markov state for xt, i.e. the state xt only depends on the previous state xt�1 and the currently chosen action

mt. More details concerning this step can be found, for example, in the original paper about Condensation8 or in

textbooks about state estimation.9

The right hand side of equation (2), which involves a recursion from time step t�1 to time step t, can be divided

into two steps for interpretation reasons: First, given a probability measure over the possible positions at time step

t�1, p(xt�1jHt�1) and a certain movement actionmt, from which we know the statistical properties p(xtjxt�1;mt),

we can update the a priori probability for being at a certain position xt at time t. In the second step, the robot

senses observations at position xt, modeled by p(otjxt) which allows for updating the belief p(xtjHt) for being at

that position at time step t.

Most approaches to the problem of localization of a mobile platform di�er in the treatment of the likelihood

function p(otjxt). Feature based approaches use a manually created scene map, for example CAD models, to match

the observed features in the image with expected ones in the map. High correspondence in the feature matching

process then means con�dence in the estimated position xt. Landmark based algorithms work in a similar way.

In our approach, the light�eld provides an image based scene model, which is the most general case, since such a

model also allows a feature matching strategy in the process of computing the likelihood function. Additionally, the

model is generated automatically as described in the previous section and can model specular re
ections, which are

viewpoint dependent. Such artifacts cannot be treated by pure geometric scene models.

3.2. Particle Filters

The problem is now, how to compute and propagate p(xtjHt) over time. Since in general the probability density

functions involved in this process cannot be given in closed forms, especially the likelihood function which depends

on the sensed data, one cannot solve (2) directly. The famous Kalman �lter10 and the extensions of it (for example,

the extended Kalman �lter11) has been used over 20 years in computer vision and robotic for state estimation.

The Kalman �lter is an adequate way for solving (1), if the underlying assumptions (Gaussian noise, linear state

transition, unimodal state distribution for xt) are ful�lled. In most cases, when working with images in natural

scenes | which means high background clutter and ambiguities | at least the treatment of the state distribution as

a unimodal Gaussian one is violated. Especially in the beginning of the localization process, when several positions

and headings xt are plausible, the approximation of p(xt�1jHt�1) by any kind of multimodal distribution is more



natural and useful. Then of course, the problem is how to evaluate the integral in (2), which can be done in a straight

forward way for Gaussian densities.

During the past years so{called particle �lters got an enormous interest in computer vision12,8 and robotics.3

Particle �lters allow to estimate and propagate moments of certain probability density functions without having an

explicit formulation of the density. They are also denoted as Monte Carlo Methods13 or Condensation algorithm.12

Without going into detail (see for example the paper on original paper about the Condensation12 for a deep

discussion), particle �lters can be brie
y summarized as follows. We approximate p(xtjHt) by a set of m so{called

particles. Each particle consists of a state value, xt;i 2 IRn
; 0 � i < m�1, and a probability or plausibility, pxt;i

2 [0:1],

of being in this state. The number m of particles has a direct in
uence on how accurate the density p(xtjHt) is

approximated by this particle set. It can be shown that for m ! 1 the particle set converges weakly towards the

density p(xtjHt).
12

To propagate the density over time, i.e. to evaluate (2), the corresponding particle set must be propagated, which

includes the application of the dynamic model p(xtjxt�1;mt) to the state set and the evaluation of the likelihood

function p(otjxt). For this, particles xt;i are drawn from the particle set with probability proportional to pxt;i
, and

propagated by drawing a sample xt+1;i from p(xt+1;ijxt;i;m). The probability pxt+1;i
of the new particle is then

updated by p(otjxt+1;i), including a �nal normalization such that
P
i

pxt+1;i
= 1. Problems, which have to be solved,

are the sampling mechanism (likelihood weighted sampling, factored sampling, importance sampling13), i.e. how

to draw samples from a probability distribution, and the number of particles to approximate the density with the

necessary accuracy.

The main point of our approach is, that this frameworks can be used in an ideal manner with the image based

scene model. Every particle xt+1;i in the particle set represents a hypothesis for the position and heading of the

mobile platform together with a probability pxt+1;i
, which measures the likelihood that the platform is at position

xt+1;i. The probability pxt+1;i
is updated by p(otjxt+1;i), which makes it necessary to compare the expected image

with the taken one. Having the image based scene model, for an arbitrary position and heading xt+1;i the expected

image can be rendered eÆciently as described in the previous section. In the next section we will explain the whole

process in more detail.

4. BRINGING TOGETHER COMPUTER VISION AND COMPUTER GRAPHICS

The last two sections have shown how computer vision and computer graphics grow together. For self{localization

using particle �lters the likelihood in (2) must be evaluated repeatedly. This means that from an environmental

map virtual views of the scenes must be rendered very quickly. This is a classical computer graphics task. Since

the rendered images shall be compared with images of the scene taken by a camera, photo{realistic rendering is

necessary. Both demands are ful�lled by the light{�eld approach. On the other side for reconstructing the light{�eld

of a scene automatically classical computer vision algorithms (structure from motion) are necessary, which closes the

loop: computer vision needs computer graphics and vice versa. The complete approach for localization of a mobile

platform, for which we show experiments in the next section, can be summarized as follows:

1. A light{�eld is reconstructed automatically based on the method described in Section 2. The light{�eld serves

as environmental map of the scene.

2. In the scene a docking position is de�ned in world coordinates.

3. The moving platform is initialized arbitrarily in the scene, which means no a priori information about its

position in world coordinates is provided. As a result p(x0) is uniformly distributed.

4. The system then moves through the following steps until it reaches a high con�dence of being at the �nal

docking position:

� compute the maximum of p(xt�1jHt�1) to get the estimated position xt�1

� compute a small movement mt based on the di�erence to the �nal docking position (translation in the

x=y{plane and rotation around the z{axis)

� take an image from the scene



Figure 4. The robot's scene environment. In the

test sequence, the robot starts from the left and

moves towards the left elevator button.

Figure 5. The autonomous moving platform with

a mounted stereo head. We only use one of the cam-

eras.

� update the estimate of the position as described in Section 3

In the next section we show an experiment which illustrates the capabilities of this approach by localizing a robot

during its movement towards an elevator button.

5. EXPERIMENTAL RESULTS

In this section we describe experiments which use the idea of our approach but performs no active movement yet.

Our scene for testing was a wall with three elevator doors as Figure 4 shows.

Before doing localization, an image based scene model must be generated, which is capable to render new, virtual

scene views. For this task, we moved our robot (see Figure 5) in front of the scene and took 28 images with the robot's

camera. In this example instead of applying our structure from motion approach, we used the robot's odometry to

determine the camera movement, because this example is not enough textured to extract and track enough point

features to get a robust motion estimation. The scene geometry has been approximated by a single plane, which has

roughly been estimated to be similar to the wall.

To test the localization capability of our approach and to simulate the navigation task, we let the robot move

towards the elevator button between the two left elevator doors. The movement enclosed translation and rotation

within the plane of motion. During this movement we recorded 20 frames with the robot's camera. We used the

information of the robot's odometry to get a rough estimate for the camera movement between each image pair.

In each of the following expermients, we initialized the position of 195 particles in a large area in front of the

elevators randomly with arbitrary orientations in the range from 0 to 2�. In the left top image of Figure 6 a top

view of the area in front of the elevators is shown with the positions of the particles after initialization, which are

drawn as gray dots.

In a �rst experiment, we used the robot's odometry as the actionsmt, which describe the relative changes of the

position and heading. Figure 6 shows a comparison of the real camera view with the rendered views of the estimated

position and the position which is given by odometry. The initial position of the odometry was adjusted manually

such that it is very close to the true position of the robot.

As the estimation of the robot's position is modeled as a whole density, we have the problem to decide for a single

pose estimation. For eÆciency reasons we chose the parameters of that particle number i as estimation which has the

maximum probability pxt;i
. This approximation in theory corresponds to a maximum likelihood estimation instead

of to a maximum a posteriori estimation. Being aware of this, we found the position estimates always suÆciently

accurate.



particles real estimation odometry

Figure 6. An experiment for testing the localization capability of our approach when using the robot's odometry.

The left images show a schematic top view of the area in front of the wall (gray area) with the elevator doors (black

rectangles). The positions of the particles are drawn as gray dots, the moving path as given by odometry is drawn

as dark line, the actual position of the robot is drawn as a small black square. The right three images show the

comparison of real camera views (left) with rendered images at the estimated most likely position (middle) and at

the position which is given by odometry (right). From top to bottom, the situation at the 1st, 10th, and 20th frame

of the test sequence is shown.

particles real estimation odometry

Figure 7. An experiment similar to the one shown in Figure 6 except that the used information about the robot's

movement is a perturbation of the odometry. This path is drawn as a gray line. The initialization step was the same

as in Figure 6, the two rows here show the situation at the 10th and the 20th frame of the test sequence.



In this experiment, the rendered view for the position which is given by the odometry is very similar to the real

camera view. Therefore, the estimation of the true position is just a small adjustment in comparison to the real

camera view. But the initial position of the robot has been determined totally automatically and very accurate. The

accuracy can be ver�ed by comparing the rendered images related to the estimation with the real camera image,

which are both shown in the �rst row of Figure 6.

To test the capability of our approach for the case when the odometry is erroneous, we made a second experiment

by perturbing the odometry information and using this perturbed information as actions mt. Figure 7 shows the

localization results for this experiment in the same wise as Figure 6. The initialization step there was the same as in

Figure reff:ergreal and therefore is omitted.

It can be seen, that the particles are ordered not as compactly as in the �rst experiment, so because of the

erroneous odometry, an additional uncertainty has been introduced. But nevertheless, the estimation of the robot's

pose is comparable to the �rst experiment as can be ver�ed by comparing the rendered images for the estimation.

Notice that in this example the used odometry was so erroneous that in the 20th frame, the elevator button even

was not visible any more.

The computation time using software rendering was 0:14 seconds for each particle. A coarse estimation of the

computation time using hardware accelerated rendering with o�{the{shelf graphics accelerator boards, which has

not been installed in our mobile platform, is approximately 0:0088 seconds per particle. Thus, in our experiments,

every 1:73 seconds we get an update of the position estimate which seems to be fast enough to localize a robot.

6. SUMMARY

The idea of combining the photo{realistic and very eÆcient visualization capabilities of computer graphics with

probabilistic self{localization approaches known from computer vision enables global robot localization in arbitrary

natural environments. The complete framework, starting from light�eld reconstruction and ending with robot navi-

gation, could only be brie
y described in this paper. Due to lack of space, we could not go into detail describing

� the structure from motion approach we usually use for light�eld reconstruction. This is described elsewhere.1,2

In our experiments we have used a simpi�ed method for reconstructing the ligh�eld, for reasons, we have

described in the experimental section.

� some general problems of the particle �lter approach, like the in
uence of the number of particles on the state

estimation results.

� how we decide for a movement while having an a posteriori distribution over the position of the mobile system.

This makes in general path planing mechanisms necessary, which is beyond the scope of the paper.

Nevertheless we claim, that image based scene models are a promissing alternative to classical geometric based

models. More than that, image based scene models in combination with eÆcient hardware accelerated rendering are

the more general case of a scene modeling, because the appearance of the scene is modeled. The experiments have

shown, that even with a simple measure for comparing two images (in our case, the pixel wise di�erence between two

color images) probabilistic state estimation algorithms, like particle �lters, return a higly accurate position estimate

in reasonable time.

The bene�ts of our approach lie in the modeling technique, which allows to handle scenes or re
ectance proper-

ties, that are diÆcult to model with pure geometric approaches. Additionally, the model can be constructed fully

automatically. One of the main probleme of image based scene models is the amount of image data which must be

stored. Although compression techniques for light�elds exits14 a smart way must be found to devide the world of

the robot into small areas, each area being represented by a smaller light�eld. In a coarse localization step, for one

of these areas must be decided.

In our future work we will concentrate on showing localization and also navigation in a more complex environment.

Also more experiments with quantitative evaluations will be performed. Finally we will prove in future experiments,

that our scene model allows such an accurate position estimation, that even navigation in narrow spaces is possible,

for example passing through a door.
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