
1

Performance Comparison and Evaluation of
AdaBoost and SoftBoost Algorithms on Generic

Object Recognition
Doaa Hegazy, Joachim Denzler

Abstract—SoftBoost is a recently presented boosting algorithm,
which trades off the size of achieved classification margin and
generalization performance. This paper presents a performance
evaluation of SoftBoost algorithm on the generic object recog-
nition problem. An appearance-based generic object recognition
model is used. The evaluation experiments are performed using
a difficult object recognition benchmark. An assessment with re-
spect to different degrees of label noise as well as a comparison to
the well known AdaBoost algorithm is performed. The obtained
results reveal that SoftBoost is encouraged to be used in cases
when the training data is known to have a high degree of noise.
Otherwise, using Adaboost can achieve better performance.

Keywords– SoftBoost algorithm, AdaBoost algorithm, Generic
object recognition.

I. INTRODUCTION

Boosting methods and algorithms have been used suc-
cessfully in many pattern recognition applications such as
feature selection [12], face detection [14] and generic object
recognition [7], [3]. AdaBoost is one of the most popular
boosting algorithms. It generates a combined hypotheses with
large margin and works well on data with low degree of noise
[10], but not good on data with high degree of noise [15].
In such a case, a large margin on all training data cannot
be achieved without affecting the generalization performance
[10], [15]. Due to this reason, many variants of AdaBoost
appeared to cope with this problem and to trade off the number
of margin errors and the size of the margin. This is achieved
by restricting the weighting maintained by the algorithm to not
concentrate too much on the most difficult (hard to classify)
examples [15]. Examples of these algorithms are AdaBoost
with soft margin [8] and LPBoost [1].
On the other hand, and as previously mentioned, the hypothe-
ses combination produced by AdaBoost has a large margin
on the data. This margin is not necessarily the maximum hard
margin. Therefore, many new versions of AdaBoost, which try
to provide a maximum hard margin, have been developed such
as AdaBoost∗ [9], TotalBoost [16], and many other algorithms
[15]. However, such algorithms are not suitable for real-world
applications with noisy data as over-fitting is more problematic
for them than the original AdaBoost algorithm [15].
SoftBoost is a newly presented boosting algorithm [15], which
combines the previously mentioned two lines of research in a

Chair of Computer Vision, Institute of Computer Science, Friedrich-
Schiller-University, Jena, Germany, hegazy@informatik.uni-jena.de,
denzler@informatik.uni-jena.de.

single algorithm, that implements the soft margin idea in a
practical boosting algorithm. To the best of our knowledge up
to now, no evaluation of this new algorithm exist on a real
world object recognition problem.
Therefore, the main objective of this paper is investigate the
recognition performance of the SoftBoost algorithm on generic
object recognition problem. An additional objective is to
evaluate the performance by comparing it to the performance
of AdaBoost algorithm using label noisy training data.
The used generic recognition model is an appearance-based
one. It employs a combination of two different types of local
descriptors (grayscale and color) for the recognition task.
These two different descriptors are computed from interest
regions extracted using an affine point detector. Learning these
descriptors is performed in a weakly supervised manner using
boosting.
The paper is organized as follows: in section 2, preliminaries
of boosting are given and AdaBoost and SoftBoost are briefly
explained . The generic object recognition model is described
in section 3. Section 4 presents the evaluation experiments and
the results obtained. Finally, conclusions are drawn in section
5.

II. BOOSTING ALGORITHMS

A. Preliminaries of Boosting

In the boosting setting, a set of N labeled training examples
(xn,yn) for n = 1 . . .N are given, where the instances xn
are in some domain χ and the labels yn ∈ ±1. Boosting
algorithms maintain a distribution d on the examples N such
that the hard to classify examples receive more weight. In
each iteration, the algorithm gives the current distribution to a
weak learning algorithm (weak learner), which returns a new
weak hypothesis h : χ→ [−1,1]N with a certain guarantee of
performance.
One measure of the performance of a weak hypothesis h with
respect to distribution d is its edge, γh = ∑N

n=1 dnynh(xn). When
the range of h is ±1 instead of the range of [−1,1], the edge
is just a affine transformation of the weighted error εh of
hypothesis h: i.e. εh (d) = 1

2 − 1
2 γh. A hypothesis that predicts

perfectly has an edge γ = 1 while a hypothesis that always
predicts incorrectly has an edge γ =−1. A random hypothesis
has an edge γ = 0. The higher the edge, the more useful is
the hypothesis for classifying the training examples. The edge
of a set of hypotheses is defined as the maximum edge of the
set.

2

After a hypothesis is received, the algorithm must update its
distribution d on the examples. Boosting algorithms (for sep-
arable case) commonly update its distribution d by placing an
edge constraint on the most recent hypothesis. Such algorithms
are called corrective [9], [15]. In totally corrective algorithms,
the distribution is updated to have a small edge with respect
to all of the previous hypotheses [16], [15]. The final output
of the boosting algorithm is always a convex combination
of weak hypotheses fW (xn) = ∑T

t=1 wtht (xn), where ht is the
hypothesis added at iteration t and wt is its coefficient [15].
The hard margin of a labeled examples (xn,yn) is defined as
ρn = yn fw (xn). The margin of the examples are taken to be
the minimum margin of the set.
It is convenient to define a N-dimensional vector um that
combines the weak hypothesis hm with the label yn of the N
examples: um

n = ynhm(xn). With this notation, the edge of the
weak hypothesis t-th hypothesis becomes d.ut and the margin
of the n-th example with respect to a convex combination w
of the first t−1 hypothesis is ∑t−1

t=1 um
n wm [15].

B. AdaBoost Algorithm

AdaBoost (Adaptive Boosting) [2] is the most well known
boosting algorithm. It is adaptive in that the linear coefficient
of the weak hypothesis depends on the weighted error of
the weak hypothesis at the time when the weak hypothesis
added to the linear combination. AdaBoost is also a corrective
algorithm. It is observed experimentally that AdaBoost is
prone to over-fitting when the training data contains high
degree of noise. This is due to the fact that, by training,
AdaBoost concentrates too much on outliers and hard to
classify examples [10] which in turn affects the generalization
performance.
AdaBoost with confidence-rated prediction [11] is used in
the evaluations performed in this paper. It differs from the
AdaBoost [2](also known as Discrete AdaBoost) that the weak
learner of the first computes a weak hypothesis h : χ → R.
The sign of h is interpreted as the predicted label (-1 or +1)
to be assigned to the instance xi and the magnitude | h(x) |
as the confidence of this prediction. Moreover, the method of
computing the coefficient of the weak hypothesis is different
[11](see algorithm 1). Further details of the algorithm could
be found in [11].

C. SoftBoost Algorithm

SoftBoost is a totally corrective algorithm which optimizes
the soft margin and tries to produce a linear combination of
hypotheses with the maximum one [15]. The term soft here
means that the algorithm does not concentrate too much on
outliers and hard to classify examples. It allows them to lie
below the margin (i.e. to have wrong predictions) but penalizes
them linearly via slack variables.
Therefore, it seems that SoftBoost avoids the problem of over-
fitting exist in AdaBoost when using training data with high
degree of noise. For the space restrictions, a brief description
of the SoftBoost algorithm is given below. Further details
about the algorithm could be found in [15].
SoftBoost takes as input, a sequence of examples S =

Input: S = 〈(x1,y1) , ...,(xN ,yN)〉; xi ∈ χ,
yi ∈ {−1,+1}.

Initialize: d1(i) to the uniform distribution.
for t = 1, ...T : do

(a) Train weak learner using distribution dt .
(b) Get weak hypothesis ht : χ→ R.
(c) Choose α ∈ R.
(d) Update:

dt+1(i) =
dt(i)exp(−αtyiht(xi))

Zt
where Zt is a normalization factor(chosen so that
dt+1 will be a distribution).

end
Output: Final hypothesis: H(x) = sign(∑T

t=1 αtht(x)).
Algorithm 1: AdaBoost with confidence-rated predic-
tions [11].

〈(x1,y1) , ...,(xN ,yN)〉 in addition to an accuracy parameter δ
and a capping parameter ν (see algorithm 2). This capping
parameter specifies how many examples could be mistrusted
or, in other words, how many examples are allowed to lie
below the margin. The algorithm has a weak learner which
provides a hypothesis with an edge with a known guarantee
g. The initial distribution d0 of the algorithm is uniform. In
each iteration t, the algorithm prompts the weak learner for
a new weak hypothesis, adds it into the constraints set, and
updates its distribution dt−1 to dt by minimizing the relative

entropy ∆
(
d,d0

)
:= ∑n

(
dn ln

dn

d0
n

)
subject to the constraints:

dt+1 = argmin
d

∆
(

d,d0
)

(1)

s.t. d ·um ≤ g−δ, for 1≤ m≤ t,

∑
n

dn = 1, d≤ 1
ν

1

III. GENERIC OBJECT RECOGNITION MODEL

The generic recognition model consists of three main steps.
First, a set of interest regions is detected and extracted from the
images using an affine point detector. Second, a combination
of two different local descriptors (grayscale and color) is used
to describe the extracted interest regions. Finally, learning is
performed using a boosting algorithm. Figure 1 provides a
semantic view of the main components of the recognition
model.

A. Interest Regions Detection

An implementation of the Hessian affine-invariant point
detector developed by [5] is used to detect and extract interest
regions from the images. The main reason for using this
detector is its robustness to view-point and scale changes as
reported in [6].

3

Fig. 1: The used generic recognition model

Input: S = 〈(x1,y1) , ...,(xN ,yN)〉, desired accuracy δ,
and capping parameter ν ∈ [1,N].

Initialize: d0
n to the uniform distribution.

for t = 1, ... do
(a) Send dt−1 and {u1, ...,ut−1} to the weak
learner and obtain hypothesis ht which has edge
at least g w.r.t. dt−1.
Set ut

n = ht (xn)yn.
(b) Update

dt = argmin
d

∆
(
d,d0)

s.t. d ·um ≤ g−δ, for 1≤ m≤ t,

∑
n

dn = 1, d≤ 1
ν

1

(c) If above infeasible or dt contains a zero then
T = t−1 and break.

end
Output: fW (x) = ∑T

m=1 Wmhm (x),where the
coefficients Wm maximize the soft margin
over the hypotheses set

{
h1, ...,ht

}
using the

LP problem (1) in [15].
Algorithm 2: SoftBoost with accuracy parameter δ and
capping parameter ν [15].

B. Local Descriptors

As mentioned previously, a combination of two local
descriptors is used.
SIFT descriptors [4]: are used as the grayscale descriptors.
SIFT descriptors are 3D histograms of gradient locations and
orientations, where locations are quantized into a 4x4 location

grid and the gradient angle is quantized into 8 orientations.
The resulting descriptor is of length 128.
Local color descriptor [13] : The authors in [13] introduced
a set of local color descriptors with different criteria such
as photometric robustness, geometric robustness, photometric
stability and generality. Among those descriptors, we choose
to use opponent angle color descriptors as they are robust
with respect to both geometrical variations caused by changes
in viewpoint, zoom and object orientations and photometric
variations caused by shadows, shading and specularity. The
opponent color descriptor depends on the angle between the
opponent color derivatives and is of length 37 bins. Details
about the construction of the opponent angle color descriptors
are given in [13].

C. The Learning Model

In learning step, a classifier which predicts whether the
image contains an instance of the object category or not
is computed. Since more than one feature type is used for
learning, each training image I is represented by a set of
features

{
Fi, j(ti, j,vi, j), j = 1...ni

}
where ni is the number of

features in image Ii (which varies from image to another
according to the number of interest points detected in the
image), ti, j indicates the type of the feature (s for SIFT, c for
color) and vi, j is the feature vector. The boosting algorithm
puts weights on the training images and requires construction
of a weak hypothesis hk which, relative to the weights, has dis-
criminative power. The algorithm is run for a certain number
of iterations (the actual number of iterations processed by the
SoftBoost algorithm depends on the solution of the embedded
optimization problem). In each iteration k, one feature of each
type is selected as a weak classifier and the weights of the
training images are updated. A linear combination of the weak

4

hypothesis together with their weights is used as a strong
hypothesis to classify new images.

Weak learner
In each iteration, the weak learner selects the most discrimi-
nant feature vector for each different feature type. The most
discriminant feature vector here is the one which has the
maximum edge on the training data. This means that the
weak learner selects two weak hypotheses in each iteration:
hs

k and hc
k for SIFT and color features respectively. Each weak

hypothesis consists of two components: a feature vector vx
k

and a similarity distance threshold θx
k (where x = s or c for

SIFT and color respectively). The threshold θx
k measures if

an image contains a feature vi, j that is similar to vx
k. The

similarity between vi, j, which belongs to the image Ii, and vx
k is

measured using Euclidean distance. This similarity threshold
is calculated as in [7].

IV. EXPERIMENTS AND RESULTS

To investigate the recognition performance of SoftBoost
algorithm, a set of experiments is performed using it as the
base learning algorithm in the recognition model. Moreover,
some experiments using AdaBoost algorithm are performed in
order to establish a performance comparison and evaluation of
both algorithms.

A. Experimental settings

The experimental settings are divided as follows:
- The used dataset: Graz02 database
(http://www.emt.tugraz.at/∼ pinz/data/) is used in all
evaluation experiments. Graz02 is a difficult dataset which
consists of three generic classes: cars, bikes and persons, in
addition to the background class (the counter-class).
- Training and Test images: For training, 300 examples
(images) are used: 150 images of objects class and 150
images of counter-class (negative). For testing, 150 new
examples are used: 75 images of objects class and 75 images
of counter-class.
- SoftBoost algorithm: The value of guarantee g is set
equal to γ∗ in all experiments, where γ∗ is the value of linear
programming problem P2 presented in [15]. The value of
accuracy parameter δ used in all experiments is 0.0001. This
value is used based on performing experiments on bikes
dataset, with values of δ ∈ {0.1,0.01,0.001,0.0001,0.00001}.
The best generalization performance is achieved at δ = 0.0001.
- AdaBoost algorithm: The AdaBoost algorithm is run for
a number of iterations T = 150. We conclude this number by
experiments where T is varied from 10 to 300. After T =
150, the test error remains constant.

B. Experiments Using Noise Free Data

Using SoftBoost Algorithm: an important parameter of the
SoftBoost algorithm is the capping parameter ν. It represents
the number of training examples which are allowed to have
wrong predictions in order to obtain high generalization per-
formance. Therefore, the optimal value of ν should be selected.
This is accomplished by using a 5-fold cross-validation for

each object class. This results to three optimal values of ν,
one for each object class. Training is performed afterwards
using the selected values of ν and the generalization rates are
given in table I.

Using AdaBoost Algorithm: Training the three object classes
is performed using T iterations specified in section 4.1 and
the resultant generalization rates are shown in table I. When
comparing SoftBoost and AdaBoost, it is clear that AdaBoost
outperforms SoftBoost in two of the three used object classes
(cars and persons) while SoftBoost achieves higher general-
ization rates on the bikes class.
Concerning the general performance of the used recognition
model, table II presents a comparison of the used recognition
model to the recognition model presented in [7]. The model
of [7] combines three point detectors with four different local
descriptors for the recognition task. AdaBoost is also used
as the underlaying learning algorithm. The results displayed
in table II proves the generalization ability of our model in
general. Although the learning algorithm is changed between
SoftBoost and AdaBoost, the achieved results in both cases
better than the results of [7].

TABLE I: Generalization rates of SoftBoost vs AdaBoost

Dataset AdaBoost SoftBoost optimal ν

Bikes 76.00 80.00 40%
Cars 80.00 78.67 70%

Persons 84.00 82.67 30%

TABLE II: Recognition rates of our model using the Graz02 dataset
compared to the results of Opelt [7].

Dataset AdaBoost SoftBoost [7]

Bikes 76.00 80.00 77.80
Cars 80.00 78.67 70.5

Persons 84.00 82.67 81.2

C. Experiments Using Noisy Data

Actually, noise could be observed at various levels of
abstraction in learning and recognition process, including high
intra-class variability, partial occlusion, background clutter,
varying illumination and added Gaussian noise to the test
images. In fact, Graz02 database is already quite noisy in this
respect. Additionally, more difficulties could be added to the
training data by the presence of outliers or miss-labeled (label
noisy) patterns. The label noise means that a pattern is clearly
a member of one class and its label corresponds to the alternate
class. The label noisy patters or examples cause the boosting to
concentrate on them during training, which in turn, deteriorates
the final hypothesis and thus the generalization performance
of the algorithm.
In this set of experiments, label noise is added by assigning
wrong labels to a percentage n of the training examples,
where n = 10,30 and 50% respectively. This means that three
different degrees of label noise are given. The test examples

5

are left unchanged. For training using SoftBoost algorithm,
a 5-fold cross-validation is used to select the optimal value
of ν at each level of noise for each class. This results to the
estimations of nine values of ν.
Table III presents the generalization rates of both AdaBoost
and SoftBoost algorithms on this set of experiments. Gener-
ally, the performance of SoftBoost exceeds the performance of
AdaBoost when the training data contains high degree of label
noise (i.e. 50%). At small degrees of label noise (i.e.10% and
30%), AdaBoost achieves better performance.

TABLE III: Generalization rates of AdaBoost and SoftBoost using
training data with different degrees of label noise.

Dataset noise AdaBoost SoftBoost optimal
degree ν

10% 78.67 74.67 70%
Bikes

30% 74.67 74.67 70%
50% 60.00 58.67 30%

10% 77.33 70.67 30%
Cars

30% 76.00 73.33 30%
50% 60.00 68.00 50%

10% 82.67 82.67 40%
Persons

30% 80.00 77.33 30%
50% 52.00 66.67 50%

V. CONCLUSIONS

A performance investigation and evaluation of the Soft-
Boost algorithm on the generic object recognition problem
has been presented. Moreover, a comparative analysis of
the performance of SoftBoost and AdaBoost algorithms has
been performed. Experiments on Graz02 dataset revealed that,
SoftBoost has a good performance and almost the same as
AdaBoost, if not lower in some cases, using noise free data.
The term noise free means recognition using already difficult
real data of object classes without imposing more difficulties
(label-noise) on it. However, SoftBoost shows more robust
performance than AdaBoost using training data with high
degree of label noise.

REFERENCES

[1] Ayhan Demiriz, Kristin P. Bennett, and John Shawe-Taylor. Linear
programming boosting via column generation. Machine Learning, 46(1-
3):225–254, 2002.

[2] Yoav. Freund and Robert E. Schapire. A decision theoretic generalization
of online learning and application to boosting. Computer and System
Sciences, 55(1):119–139, 1997.

[3] Doaa Hegazy and Joachim Denzler. Boosting local colored features for
generic object recognition. Pattern Recognition and Image Understand-
ing, 18:323–327, 2008.

[4] David G. Lowe. Distinctive image features from scale-invariant key-
points. International Journal of Computer Vision, 60:91–110, 2004.

[5] Krystian Mikolajczyk and Cordelia Schmid. An affine invariant interest
point detector. In 7th European Conference on Computer Vision
ECCV02, pages 128–142, 2002.

[6] Pierre Moreels and Pietro Perona. Evaluation of features detectors and
descriptors based on 3d objects. Int. J. Comput. Vision, 73(3):263–284,
2007.

[7] Andreas Opelt, Axel Pinz, Michael Fussenegger, and Peter Auer. Generic
object recognirion with boosting. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 28(3):416–431, 2006.

[8] Gunnar. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for AdaBoost.
Machine Learning, 42(3):287–320, March 2001.

[9] Gunnar Rätsch and Manfred K. Warmuth. Efficient margin maximizing
with boosting. Journal of Machine Learning Research, 6:2131–2152,
2002.

[10] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee.
Boosting the margin: a new explanation for the effectiveness of voting
methods. In Proc. 14th International Conference on Machine Learning,
pages 322–330. Morgan Kaufmann, 1997.

[11] Robert E. Schapire and Yoram Singer. Improved boosting algorithms
using confidence-rated predictions. Machine Learning, 37:297–336,
1999.

[12] Zehang Sun, George Bebis, and Ronald Miller. Boosting object detection
using feature selection. page 290, 2003.

[13] Joost van de Weijer and Cordelia Schmid. Coloring Local Feature
Extraction. In 8th European Conference on Computer Vision ECCV06,
volume 2, pages 334–348, 2006.

[14] Paul Viola and Michael Jones. Rapid object detection uisng a boosted
cascade of simple features. In IEEE Computer Scociety Conference on
Computer Vision and Pattern Recognition CVPR01, volume 1, pages
511–518, 2001.

[15] Manfred K. Warmuth, Karen Glocer, and Gunnar Rätsch. Boosting
algorithms for maximizining the soft margin. Advances in Neural
Information Processing Systems (NIPS’08), 2008.

[16] Manfred K. Warmuth, Jun Liao, and Gunnar Rätsch. Totally corrective
boosting algorithms that maximize the margin. In ICML ’06: Proceed-
ings of the 23rd international conference on Machine learning, pages
1001–1008, New York, NY, USA, 2006. ACM.

