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ABSTRACT:

This paper presents a method for the classification of satellite images into multiple predefined land cover classes. The proposed
approach results in a fully automatic segmentation and classification of each pixel, using a small amount of training data. Therefore,
semantic segmentation techniques are used, which are already successful applied to other computer vision tasks like facade recognition.
We explain some simple modifications made to the method for the adaption of remote sensing data. Besides local features, the proposed
method also includes contextual properties of multiple classes. Our method is flexible and can be extended for any amount of channels
and combinations of those. Furthermore, it is possible to adapt the approach to several scenarios, different image scales, or other earth
observation applications, using spatially resolved data. However, the focus of the current work is on high resolution satellite images
of urban areas. Experiments on a QuickBird-image and LiDAR data of the city of Rostock show the flexibility of the method. A
significant better accuracy can be achieved using contextual features.

1 INTRODUCTION

The beginning of land cover classification from aerial images
dates back around 70 years (Anderson et al., 1976). Since then
aerial and satellite images are used to extract land cover in a
broadly manner and without direct contact to the observed area.
Land cover is defined as “the observed (bio)physical cover on the
earth’s surface” by Di Gregorio (2005). It is an essential infor-
mation for change detection applications or derivation of relevant
planning or modeling parameters. Other fields of applications
are the analysis and visualization of complex topics like climate
change, biodiversity, resource management, living quality assess-
ment, land use derivation or disaster management (Herold et al.,
2008, Hüttich et al., 2011, Walde et al., 2012). Manual digiti-
zation of land cover or land surveying methods result in huge
effort in time as well as financial and personal resources. There-
fore, methods of automated land cover extraction on the basis of
area-wide available remote sensing data are utilized and contin-
ually improved. High spatial resolution satellite images, such as
QuickBird, Ikonos, or WorldView, enable to map the heteroge-
neous range of urban land cover. By the availability of such high
resolution images, OBIA-methods (Object Based Image Analy-
sis) were developed (Benz et al., 2004, Hay and Castilla, 2008,
Blaschke, 2010), which are preferred to pixel-based methods in
urban context (Myint et al., 2011). Pixel-based methods consider
only spectral properties. Object-based classification processes
observe, apart from spectral properties, characteristics like shape,
texture or adjacency criteria. An overview of automatic labeling
methods for land-cover classification can be found in Schindler
(2012).

In this work, we present an automatic approach for semantic seg-
mentation and classification, which does not need any human in-
teraction. It extracts the urban land cover from high resolution
satellite images using just some training areas. The proposed
method is called Iterative Context Forest from Fröhlich et al.
(2012). This approach uses besides local features also contex-
tual cues between classes. For instance, the probability of large

buildings and impervious surfaces (e.g., parking slots) in indus-
trial areas is much higher than in allotment areas. Using contex-
tual information improves the classification results significantly.
The proposed method is flexible in using multiple channels and
combinations of those. Therefore, the optimal features for each
class are automatically selected out of a big feature pool during
a training step. As features we use established methods from
computer vision, like integral features from person detection. It-
erative Context Forests are originally developed for the problems
from image processing like facade recognition and we adapt them
for remote sensing data.

The paper is structured as follows. Section 2 describes the study
site and the available data set. In Section 3 the method of the se-
mantic segmentation and the modifications made due to remote
sensing data are explained. The results are presented and dis-
cussed in Section 4. Finally, Section 5 summarizes the work in
this paper and mentions further research aspects.

2 STUDY AREA AND DATA SET

In the focus of this study, is the research area of Rostock, a city
with more than 200.000 inhabitants on an area of 181 km2, situ-
ated in the north of Germany (Mecklenburg- Vorpommern Statis-
tisches Amt, 2012). A subset of five by five kilometers of a cloud-
free Quickbird scene from September 2009 was available for this
study to develop and test the method (Figure 1). It represents
the south-west part of Rostock, including the Warnow river in
the north, parts of the city center, the federal road B103 in the
west, and adjacent fields. The Quickbird scene has four multi-
spectral channels (blue, green, red, near infrared), which were
pansharpened with the panchromatic channel to a spatial resolu-
tion of 60 cm per pixel. The scene was provided in the Ortho-
Ready Standard (OR2A) format and was projected to an average
elevation (Cheng et al., 2003). The image was corrected for atmo-
spheric effects and orthorectified using ground control points and
a digital terrain model. Additionally, a LiDAR normalized dig-
ital surface model (nDSM) was available, which was produced



Figure 1: Quickbird satellite image subset of Rostock
( c©DigitalGlobe, Inc., 2011).

by subtracting the terrain from the surface model (collected in
2006). The relative object heights of the nDSM were provided in
a spatial resolution of 2 m per pixel on the ground.

3 SEMANTIC SEGMENTATION

In computer vision, the term semantic segmentation covers sev-
eral methods for pixel-wise annotation of images without a focus
on specific tasks. At which, segmentation denotes the process of
dividing an images into disjoint group of pixels. Each of those
groups is called a region. Furthermore, all pixels in a region are
homogeneous with respect to a specific criteria (e.g., color or tex-
ture). The target of segmenting an image is to transform the im-
age into a better representation, which is reduced to the essential
parts. Furthermore, segmentation can be differed into unsuper-
vised and supervised segmentation.

Unsupervised segmentation denotes that all pixels are grouped
into different regions, but there is no meaning annotated to any of
them. However, for supervised segmentation or semantic seg-
mentation a semantic meaning is annotated to each region or
rather to each pixel. Usually, this is a class name out of a pre-
defined set of class names. The selection of those classes highly
depends on the chosen task and the data. For instance, a low res-
olution satellite image of a whole country can be analyzed, where
the classes city and forest might be interesting. Alternatively, if
we classify land cover of very high resolution satellite images of
cities, classes like roof, pool, or tree are recognizable in the im-
age.

In this section, we will introduce the Iterative Context Forest
(ICF) from Fröhlich et al. (2012). Afterwards, we focus on the
differences to the original work. The basic idea of Iterative Con-
text Forest is similar to the Semantic Texton Forests (STF) from
Shoton et al. (2008). The basic difference is that the STF context
features are computed in advance and can not adapt to the current
classification result after each level of a tree.

3.1 Essential foundations

Feature vectors are compositions of multiple features. Each fea-
ture vector describes an object or a part of an object. For in-
stance, the mean value of each color channel is such a collection

of simple features. To describe more complex structures, we need
besides color also texture and shape as important features.

Classification denotes the problem in pattern recognition of as-
signing a class label to a feature vector. Therefore, a classifier
needs an adequate set of already labeled feature vectors. The
classifier tries to model the problem out of this training data dur-
ing a training step. With this model, the classifier can assign to
each new feature vector a label during testing.

3.2 Iterative Context Forests

An Iterative Context Forests (ICF) is a classification system which
is based on Random Decision Forests (RDF) (Breiman, 2001).
Each RDF is an ensemble of decision trees (DT). Therefore, in
this section we first introduce DT, subsequently RDF and finally
ICF.

3.2.1 Decision trees To solve the classification problem, de-
cision trees (Duda and Hart, 1973, Chap. 8.2) are a fast and sim-
ple way. The training data is split by a simple decision (e.g.,
is the current value in the green channel less than 127 or not).
Each subset is split again by another but also simple decisions
into more subsets until each subset consists only of feature vec-
tors from one class. Due to these splits, a tree like structure is
created, where each subset with only one class in it is called a
leaf of the tree. All other subsets are called inner node. The tree
is traversed by an unknown feature vector until this vector ends
in a leaf. The assigned class to this feature vector is the same as
all training feature vectors have in this leaf. To find the best split
during training a brute-force search in the training data is done by
maximizing the Kullback-Leibler entropy.

3.2.2 Random decision forests It has been exposed that de-
cision trees tend to overfitting to the training data. In the worst
case, training a tree on data with high noise let this tree split the
data until each leaf only consists of a single feature vector. To
prevent this, Breiman (2001) suggest to use RDF, which prevents
overfitting by using multiple random selections. First, there is
not only one tree learned but many. Second, each tree is trained
on a different random subset of the training data. Third, for each
split only a random subset from the feature space is used. Fur-
thermore, the data is not split anymore until the feature vectors
of one node are from the same class. There are several stop cri-
teria instead: a maximum depth of the tree, a minimum number
of training samples in a leaf, and a threshold for the entropy in
a leaf is defined. Therefore, an a-posteriori probability can be
computed from the distribution of the labels of the feature vec-
tors ended up in the current leaf per tree. A new feature vector
traverses all trees and for each tree it ends up in a leaf. The final
decision is made by averaging the probabilities of all these leafs
(Figure 2).

3.2.3 Millions of features The presented method is based on
the extraction of multiple features from the input image. Besides
of the single input channels, additional channels can be com-
puted, e.g., gradient image. On each of these channels and on
combination of those several features can be computed in a local
neighborhood d. For instance, the difference of two random se-
lected pixels relatively to the current pixel position or the mean
value of a random selected pixel relatively to the current position
(more feature extraction methods are shown in Figure 3).

3.2.4 Auto context features The main difference to a stan-
dard RDF is the usage of features changing during traversing
the tree. Therfore, the trees have to be created level-wise. Af-
ter learning a level the probabilities for each pixel and for each



Figure 2: Random decision forest — l different binary decision
tree, traversed node are marked red and the reached leafs are
marked black.

class are added to the feature space as additional feature channels.
Context knowledge can be extracted from the neighborhood, if
the output of the previous level leads to an adequate result. Some
of these contextual features are presented in Figure 8.

3.3 Modifications for remote sensing data

The presented method is only used before on datasets presenting
facade images (Fröhlich et al., 2012). The challenges in facade
images are different to the challenges in remote sensing images.
Due to the resolution of the image and the size of the area, the
objects are much smaller compared to windows or other objects
from facade images. To adapt to this circumstances, the window
size d is reduced (cf. Section 3.2.3 and Figure 3). Furthermore,
some feature channels from the original work are not adaptable
to remote sensing data, like the geometric context (Hoiem et al.,
2005). Instead, some for the classical computer vision unusual
channels can be used. These channels are near infrared and Li-
DAR nDSM. Due to the flexibility of the proposed method, any
kind of channels might be added, like the “Normalized Difference
Vegetation Index” (NDVI):

NDVI(x, y) =
NIR(x, y)− Red(x, y)

NIR(x, y) + Red(x, y)
. (1)

This index is computed from the red and the near infrared channel
and allows a differentiation of vegetation and paved areas.

4 RESULTS

For testing, we used some already labeled training areas. On the
rest of the dataset 65 points per class are randomly selected for
testing (Figure 4). Due to the previous mentioned randomiza-
tions, each classification is repeated ten times and the results are
averaged. We focused on the classes: tree, water, bare soil, build-
ing, grassland, and impervious.

All tests are made with a fixed window size d = 30px = 18m for
non-contextual features and d = 120px = 72m for all contextual
features. Those values are exposed to be optimal in previous tests.

The qualitative results of our proposed method are presented in
Figure 5 and the quantitative results in Figure 6. Using only the
RGB values, the near infrared (NIR) and the panchromatic chan-
nel (PAN) we get an overall accuracy of 82.5% (Figure 6(a)). The
main problems are to differ between the classes impervious and
building as well as grassland and bare soil. The classes tree and
water are already well classified. Adding the nDSM the confu-
sion of building and impervious rapidly decreases (Figure 6(b)).
This accords to our expectations, due to the fact that those both
classes look very similar from the bird’s eye view but they differ
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Figure 3: Feature extraction methods from (Fröhlich et al., 2012).
The blue pixel denotes the current pixel position and the grid a
window around it. The red and orange pixels are used as fea-
tures. They can be used as simple feature (c and d) or they can be
combined, e.g., by A+B, A−B or |A−B| (a,b and e).

in the height. Adding the NDVI helps to reduce the confusion
between the classes grassland and bare soil (Figure 6(c)). This is
also what we expected, due to the fact that grassland has a much
brighter appearance in the NDVI image than bare soil. But there
are still some confusions between bare soil and grassland. On the
other side, adding the NDVI also boosts the confusion between
tree and grassland. This might be a side effect of almost the same
appearance of those classes in the NDVI channel and the assign-
ment of shrubs to either of the classes. In Figure 6(d), we added
both channels, nDSM and NDVI. The benefits from adding only
NDVI or adding only nDSM are still valid.

In Figure 6(e), we used the same settings as in Figure 6(d) besides
that we switched off the context features. Almost every value
without using context is worse than the values using contextual
cues. Especially, bare soil and impervious benefits from using
contextual knowledge. Without contextual knowledge the class
bare soil is often confused with grassland and impervious, but
using contextual knowledge impervious and bare soil are well
classified. One suitable explanation for this might be that bare
soil is often found on harvested fields outside the city. Due to this
reason, the probability for classes like grassland or impervious is
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Figure 5: Classification result and four sample areas in full resolution (each 420× 420m).
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(b) RGB & NIR & PAN & nDSM

(κ=0.859)
tree water soil build. grass imper.

impervious

grassland

building

bare soil

water

tree

0% 0% 0.5% 21.2% 2.1% 76.2%

9.4% 0.2% 0% 0% 89.1% 1.4%
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99.8% 0% 0% 0% 0.2% 0%

UA

76.2%

89.1%

83.1%

82.7%

98.5%

99.8%

PA

90.3% 99% 98.6% 79.7% 86.1% 77.6%

ø

88.2%

(c) RGB & NIR & PAN & NDVI
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(e) RGB & NIR & PAN & NDVI & nDSM with-
out context

Figure 6: Results of ICF using different channels. RGB: red, green and blue channel, NIR: near infrared, PAN: panchromatic channel,
NDVI: normalized differenced vegetation index, nDSM: normalized elevation model. UA: user accuracy and PA: producer accuracy.
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Figure 7: Context vs. no context: first row using contextual features to differ between impervious (road) and water tends to better
results than using no contextual features in the second row.

Figure 4: The seven training regions and the 65 evaluation points
per class.

much higher in the neighborhood of buildings.

The influence of the window size and the usage of contextual
features is shown in Figure 7. In this example in the top row, the
classes water and impervious (the road) are well distinguished,
but without using contextual knowledge there are some problems
in the bottom row, where some pixels in the middle of the street
are classified as water, due to the fact that in this case the sur-
rounding area is not considered.

Since the time interval from LiDAR, collected in 2006, and the
QuickBird satellite image, recorded in 2009, artificial “change”
is created, which leads to misclassifications. Some buildings are
visible in the satellite image and not in the nDSM and the other
way around. There are some problems with the shadow of trees,
which are not represented enough in the training data. Further-

more, small objects (like small detached houses) vanish in the
classification result with a larger window size. Finally, the object
borders are very smooth, this can be fixed by using an unsuper-
vised segmentation.

In Figure 8, we show the final probability maps for all classes
and for each pixel of selection of the data. It is not obligatory to
use the most probable class per pixel as final decision. It is also
possible to use those maps for further processing like filling gaps
between streets. However, these specialized methods are not part
of this work.

The best classification result (using context on the QuickBird
data, nDSM and NDVI) is shown in Figure 5, including some
areas in detail.

5 CONCLUSIONS AND FURTHER WORK

In this work, we introduced a state of the art approach from com-
puter vision for semantic segmentation. Furthermore, we have
presented how to adapt this method for the classification of land
cover. In our experiment, we have shown that our method is flexi-
ble in using multiple channels and that adding channels increases
the quality of the result. The benefits of adding contextual knowl-
edge to the classification has been demonstrated and discussed for
some specific problems.

For further work, we are planning to use an unsupervised seg-
mentation to improve the performance especially at the borders
of the objects. Furthermore, we are planning to incorporate shape
information. Finally, an analysis of the whole QuickBird scene
(13.8 × 15.5km) is planned as well as experiments using other
scales and classes.
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Figure 8: Probability maps for all classes (each sample area is
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