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Abstract This paper deals with the task of semantic seg-
mentation, which aims to provide a complete description
of an image by inferring a pixelwise labeling. While pix-
elwise classification is a suitable approach to achieve this
goal, state-of-the-art kernel methods are generally not appli-
cable since training and testing phase involve large amounts
of data. We address this problem by presenting a method
for large-scale inference with Gaussian processes. Standard
limitations of Gaussian process classifiers in terms of speed
and memory are overcome by pre-clustering the data us-
ing decision trees. This leads to a breakdown of the entire
problem into several independent classification tasks whose
complexity is controlled by the maximum number of train-
ing examples allowed in the tree leaves. We additionally
propose a technique which allows for computing multi-class
probabilities by incorporating uncertainties of the classifier
estimates. The approach provides pixelwise semantics for a
wide range of applications and different image types such
as those from scene understanding, defect localization, and
remote sensing. Our experiments are performed with a fa-
cade recognition application that shows the significant per-
formance gain achieved by our method compared to previ-
ous approaches.

Keywords Large scale classification; Gaussian processes;
Random decision forest; Semantic segmentation; Facade
recognition; Scene interpretation
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1 Introduction

Semantic segmentation can be regarded as one of the most
difficult visual recognition problems, since it requires turn-
ing each pixel of an image into a suitable category label.
Due to the very general problem description, semantic seg-
mentation approaches can be used in nearly every applica-
tion that requires a precise labeling. Especially in the con-
text of facade recognition, semantic segmentation has been
found to be an useful tool. In contrast to the direct catego-
rization of objects in a street scene [12], the general frame-
work of semantic segmentation can be often augmented with
additional information about the special task at hand. For
instance, the consecutive nature of images drawn from a
sequence can be exploited to enhance classification accu-
racy [45] or to infer a 3D reconstruction of streets [43]. In
the work of [36], prior information regarding the composi-
tion of facade parts, such as the relative location of windows
and doors, are enforced using shape grammars.

Irrespective of the kind and amount of prior information
used, the semantic segmentation step remains a crucial part
in most facade recognition approaches. Usually, this task is
solved in a supervised manner by learning a classifier on
local patches with training examples obtained from pixel-
wise labeled images [9,11,30,31]. To cope with the large
amount of training data, previous works use piecewise lin-
ear classifiers as classification techniques such as logistic
regression [9], random decision forests [12,30,36] or boost-
ing [16,31,43,45]. In this area the use of non-linear and
non-parametric learning machines, such as Gaussian process
(GP) classifiers [24], is limited due to their computational
demands and their need for a large memory capacity.

In this paper, we demonstrate how to perform inference
for GP classification with tens of thousands of training ex-
amples occurring in supervised semantic segmentation sce-
narios. Our approach is based on pre-clustering the available
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Fig. 1 An outline of our approach: a decision tree is used to cluster
the data in a supervised manner and a GP classifier is used to separate
classes in each leaf node.

training set with decision trees and learning a GP classifier
for each leaf of the tree (cf. Fig. 1). In contrast to large-
margin based learners, such as support vector machines [28],
GP classifiers implicitly allow us to calculate the uncertainty
of an estimate, which is particularly useful to derive suitable
multi-class probabilities or for novelty detection. The result-
ing combined classifier offers to go beyond the restrictions
of piecewise linear classifiers. Due to the large variability
of local features belonging to different object categories, the
ability to discriminate classes in a non-linear way is espe-
cially important for semantic segmentation tasks. Further-
more, our approach is adaptive and allows for handling the
trade-off between accuracy and computation time.

In comparison to other semantic segmentation methods
like conditional Markov random fields (CRF), our proposed
method models the image in multiple local features, which
are all analyzed in a continuous probabilistic framework.
Furthermore, the output of our framework can be used as
unary term in different CRF methods. With this, our prob-
abilistic framework is not in a direct competition with CRF
methods, but with typical classification methods like support
vector machines and logistic regression.

With the rich and meaningful representation of a pix-
elwise labeled image, a whole bunch of applications is di-
rectly available. In the following work we concentrate on
facade recognition, which for example allows for automat-
ically generating facade models used for 3d city modeling
[14].

1.1 Related Work on Semantic Segmentation and Facade
Recognition

Semantic segmentation is abstract name for all methods try-
ing to label any sort of image pixelwise. The goal is to sep-
arate an image into homogeneous areas, where each region

represents an instance of one of the trained classes. Due to
the high need of computational resources this research topic
got important in the second half of the last decade. Csurka
et al. [9] presented a straight forward approach very simi-
lar to ours. The main parts are: unsupervised segmentation,
feature extraction, feature classification and region labeling.

Further approaches focused on improving these local re-
sults by using conditional Markov random fields (CRF) [15,
19,44]. Yang and Förstner [47] present an approach to label
facades by using a CRF, in which the unary potentials are
computed by applying a random forest classifier. A subse-
quent work of the same authors [46] improves this method
by considering a hierarchical CRF that exploits region seg-
mentations on multiple image scales.

Another way to improve the results is by applying model
based approaches with hard coded prior knowledge. Teboul
et al. [36] uses so called shape grammars. For this the au-
thors of [36] propose to use a simple random decision forest
(RDF) for an initial result which will be improved by opti-
mizing the labels with respect to a given grammar. In [35]
the authors advanced the solving of the optimization prob-
lem in speed and accuracy. Normally model based methods
tend to much better results than non model based methods
like ours, with the precondition that the analyzed images are
in a similar scenario as in the model encoded. Instead of
that, classical semantic segmentation approaches like ours
are much more flexible and tends also to good results on
more general images.

In contrast to all those works, we focus on the essen-
tial part of accurately classifying local patches without any
contextual knowledge. In our experiments, we show that we
are even able to outperform previous CRF approaches. We
expect that adding a CRF model to our approach, which is
beyond the scope of this paper, would further improve the
recognition performance.

1.2 Related Work on Efficient GP Classification

In the last years, a large amount of scientific effort has been
spent to develop fast inference techniques for GP regres-
sion and classification [24]. Most of them usually rely on
conditional independence assumptions [4] with respect to a
small set of predefined variables which might either be part
of the training dataset [37] or learned during training [33].
A separate branch of methods are based on decomposition
techniques, where the original large-scale problem is broken
down into a collection of smaller problems. Next to sim-
ple Bagging strategies [7], unsupervised kd-trees neglect-
ing label information during clustering were recently pro-
posed [29] for GP regression. As a supervised alternative,
Broderick et al. [3] combined a Bayesian decision tree with
GP classifiers. The approach of Urtasun et al. [40] performs
GP regression by selecting training examples from a local
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neighborhood of a test point. The paper also compares the
local approach to global ones using a pre-clustering tech-
nique. Whereas, their local approach allows reducing bound-
ary effects, our pre-clustering method leads to a logarithmic
rather than a linear computation time during learning with
respect to the number of training examples.

Another important direction for fast inference with Gaus-
sian process models are Bayesian committee machines as in-
troduced by Tresp et al. [38]. The underlying idea is also to
decompose the training set into several subsets and to learn a
regressor or classifier for each set independently. However,
unlike our approach, each partition is used for classifying
test examples. Tresp et al. [38] also study fast GP classi-
fication with time-consuming approximate inference tech-
niques instead of relying on GP regression as done in this
work. Especially in the context of visual classification tasks
it has been shown that, despite its improper noise model, GP
regression directly applied to the labels is often sufficient
[26].

There is also a large number of related papers concern-
ing large-scale learning with support vector machines (SVM).
For example, Tsang et al. [39] improves the core vector ma-
chine formulation of SVM by considering enclosing balls
of fixed radius and presenting corresponding approximation
techniques. In contrast to our approach, they do not focus
on speeding up the prediction time necessary to classify a
new example. An approach highly related to ours is pro-
posed in Chang et al. [5] where SVM are accelerated us-
ing a decomposition derived from a decision tree. In their
setting, standard SVMs are employed resulting in a classi-
fier which produces hard decisions. In the context of scene
recognition, Fröhlich et al. [13] recently proposed a GP-
based method relying on a pre-clustering via random deci-
sion forests. However, this approach is solely based on a-
posteriori estimates of the predictive distribution, neglecting
available uncertainty values.

1.3 Outline of the Paper

The remainder of this paper is organized as follows. First of
all, we describe the basic principles of the semantic segmen-
tation approach used. Section 3 reviews Gaussian processes
for classification tasks and proposes a method to obtain suit-
able probabilities from the one-vs.-all method of [18]. Our
tree-based acceleration technique for inference with Gaus-
sian processes is presented in Section 4. We perform exper-
iments for facade recognition applications as a special case
of semantic segmentation and evaluate them in Section 5. A
summary of our findings and a discussion of future research
directions conclude this paper.

Fig. 2 Overview of semantic segmentation using local features.

2 Semantic Segmentation Framework

As described above, semantic segmentation is concerned with
assigning class labels (or probabilities) to each pixel of a
given image. Csurka et al. [9] proposed a simple but pow-
erful framework for tackling this task. Relying on a bottom-
up methodology, their approach combines an initial unsu-
pervised over-segmentation of a given image with pixelwise
classification results.

It has been recently shown on an empirical basis [12]
that a time-consuming feature transformation step from the
original framework [9] can be bypassed. By using a random
decision forest, training and prediction time is considerably
reduced.

The whole processing pipeline of this approach is de-
picted in Fig. 2. It mainly includes four steps:

1. Unsupervised segmentation: an over-segmentation is
obtained using an image segmentation algorithm.

2. Local feature extraction: to capture color and texture
information in a local neighborhood, feature descriptors
are computed on an equally spaced grid for various scales.

3. Pixelwise classification: labels are softly assigned to each
grid point using a probabilistic classifier. In order to gen-
erate dense probability maps, all grid-based classifica-
tion results are convolved with a Gaussian filter. The fi-
nal probability map is generated by averaging all maps
obtained for different scales.

4. Combination of over-segmentation and probability
map: one deterministic class label is assigned to each
cluster segment by choosing the category with maxi-
mum average probability within that region.

A detailed description of our experimental setup can be found
in Section 5.2.
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3 Gaussian Process Classification

In the following, we briefly review Gaussian process (GP)
regression and classification. We concentrate on the main
model assumptions and the resulting prediction equation.
For a presentation of the full Bayesian treatment we refer
to Rasmussen and Williams [24].

3.1 Basic Principles of GP Priors

Given n training examples xi ∈ RD denoting input feature
vectors and corresponding binary labels yi ∈ {−1, 1}, we
need to predict the label y∗ of an unseen example x∗. There-
fore, a learner has to find the intrinsic relationship between
inputs x and labels y. It is often assumed that the desired
mapping can be modeled by y = f(x) + ε, where f is a
latent function (which is not observed during training) and ε
denotes a noise term.

One common modeling approach is to assume that f be-
longs to some parametric family and to learn the parame-
ters which best describe the training data. However, the main
benefit of the GP framework is its ability to model the un-
derlying function f directly, i.e. without any fixed parame-
terization, by assuming that f is a sample of a specific dis-
tribution. Defining a distribution over functions in a non-
parametric manner can be done with a Gaussian process,
which is a special stochastic process.

3.2 Bayesian Framework for Regression and
Classification with GP

To use the modeling ideas described in the previous section,
we formalize and correctly specify the two main modeling
assumptions for regression and classification with Gaussian
processes:

1. The latent function f is a sample from a GP prior

f ∼ GP(0,K(·, ·))

with zero mean and covariance or kernel function K:

RD × RD → R .

2. Labels y are conditionally independent given latent func-
tion values f(x) and are described using some noise
model p(y | f(x)).

The Gaussian process prior enables to model the correlation
between labels using the similarity of inputs, which is de-
scribed by the kernel function. It is thus possible to model
the assumption of smoothness, i.e. that similar inputs should
lead to similar labels.

For classification purposes sigmoid functions are often
employed as noise models [24]. In contrast, we follow Kapoor
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Fig. 3 Gaussian process regression applied to a small one-dimensional
example. Training points are shown as blue circles and the predictive
mean is plotted in red color. The shaded area highlights the confidence
interval derived from the predictive variance.

et al. [18] and use zero mean Gaussian noise with variance
σ2
n:

p(y | f(x)) = N (y | f(x), σ2
n) , (1)

which is the standard assumption for GP regression. The ad-
vantage of this label regression approach is that tractable
predictions for unseen points x∗ are possible, without using
approximate inference methods [24].

Let K be the kernel matrix with pair-wise kernel values
of the training examples Kij = K(xi,xj) and k∗ be ker-
nel values (k∗)i = K(xi,x∗) corresponding to test example
x∗. The most likely outcome ȳ∗ given input x∗ and labeled
training data can then be predicted analytically using the fol-
lowing equation:

ȳ∗(x∗) = kT
∗ (K + σ2

nI)
−1y . (2)

with y ∈ {−1, 1}n being the vector of the binary labels
of all training examples. This prediction equation is equiva-
lent to kernel ridge regression, but with a clear probabilistic
meaning. For example, the GP framework allows for pre-
dicting the standard deviation σ2

∗ of the estimation by:

σ2
∗(x∗) = K(x∗,x∗)− kT

∗ (K + σ2
nI)

−1k∗ + σ2
n . (3)

Please note that standard support vector machines lack this
intrinsic probabilistic formulation and that the associated
optimization objective does not give rise to an uncertainty
estimate. An example of the result of GP regression is given
in Fig. 3.

3.3 Multi-class Classification

In the previous section GP classification is restricted to bi-
nary tasks. However, by applying the one-vs.-all strategy
in combination with a majority voting scheme, multi-class
classification problems can be solved without much addi-
tional computational effort [18]. Let ym ∈ {−1, 1}n be the
vector of binary labels corresponding to classm ∈ {1, . . . ,M}
derived from the multi-class label vector y by:

ymi = 2 δ(yi = m)− 1 , (4)
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where δ(a) = 1 if and only if a is true. The final predicted
category is the one that achieves the highest predictive pos-
terior mean given by the corresponding binary problem:

ȳmulti(x∗) = argmax
m=1...M

ȳm∗ (x∗) (5)

= argmax
m=1...M

kT
∗ (K + σ2

nI)
−1ym . (6)

3.4 Probability Calibration

Due to additional smoothing applied to the probability maps,
the semantic segmentation framework presented in Section 2
requires that the classifier predicts benign probabilities for
each class. The one-vs.-all approach of [18] only offers a
hard classification decision as given in equation (6). To de-
rive probability estimates for each class, we could squash
the posterior means using a softmax function [24]. However,
this strategy completely ignores the uncertainty of the esti-
mate and hides the fact that the one-vs.-all decision is also
probabilistic in its nature.

We propose to take the whole posterior distribution

N (ȳm∗ (x∗), σ2
∗(x∗))

of each random variable ym∗ into account, so that the prob-
ability of class m achieving the maximum score can be ex-
pressed by

p(ymulti(x∗) = m) = p
(

max
m′=1...M

ym
′

∗ = ym∗

)
. (7)

Unfortunately, it does not seem to be possible to derive a
closed-form solution for the probability on the right hand
side of equation (7) for a multi-class scenario with M > 2.
Therefore, we use a simple Monte-Carlo technique and sam-
ple Z times, e.g. Z = 200, from all M Gaussian distri-
butions N (ȳm∗ (x∗), σ2

∗(x∗)) and estimate the probability of
each class m by

p(ymulti(x∗) = m) ≈ Zm

Z
, (8)

with Zm denoting the number of times where the draw from
ym was the maximum value. A large variance σ2

∗, i.e. a high
uncertainty of the estimate, leads to a nearly uniform distri-
bution p(ymulti(x∗) = m), whereas a zero variance results
in a distribution which is equal to one for the class which
corresponds to the highest posterior mean.

An alternative would be to directly use a multi-class clas-
sification approach with Gaussian processes, but this has to
be paid with time-consuming approximation techniques like
Laplace approximation [24].

Table 1 Computational complexity of all presented methods: n de-
notes the number of training examples and ` refers to the maximum
number of examples in inhomogeneous leaf nodes. For the sake of sim-
plicity, balanced trees are assumed. (†) time includes the calculation of
the uncertainty.

Training Classification

GP O(n3) O(n2)†

Decision Tree O(n logn) O(logn)
DT-GP O(n logn+ n`2) O(logn+ `)
DT-GP CALIBRATED O(n logn+ n`2) O(logn+ `2)†

4 Large-Scale GP Classification with Tree-based Models

In the following, we show how to speed up learning and clas-
sification with our tree-based Gaussian process approach.
The main advantage is that we are able to directly handle
the trade-off between accuracy and computation time, which
allows for using our approach in very different semantic seg-
mentation scenarios with varying requirements.

4.1 Learning

The major shortcoming of GP-based models is their runtime
and memory complexity. Due to the (indirect) inversion of
K required for computing (2) and (3), the runtime and mem-
ory scales cubically and quadratically, respectively, in the
number n of training examples. This fact often renders GP
models unsuitable for large-scale problems, where tens or
hundreds of thousand training examples are given. To cir-
cumvent this problem, many techniques have been proposed
to speed-up the inference process using conditional inde-
pendence assumptions [4], kernel matrix approximation [42]
or efficient decomposition of the problem into several sub-
tasks [3,29].

For the latter point, deterministic decision trees [2] have
been found particularly useful in large-scale classification
problems [5,13] due to their ability to efficiently cluster the
input space in a supervised manner. Starting by a root node
which contains the whole training set, the input space is di-
vided using a simple classifier, e.g. a decision stump [17].
This directly induces a clustering of the training data and
new child nodes are associated with the resulting subsets.
This procedure is repeated until a stopping criterion is met.

By utilizing above-mentioned tree decomposition, pow-
erful classifiers such as GP classifiers or SVMs [41] can
be trained in each leaf node. The training complexity hence
solely depends on the amount of data arriving at the leaves
of the tree. For large-scale applications, it is hence necessary
to avoid leaf nodes which contain many training examples.
As proposed in [5] and [13], this constraint can be directly
encoded in the termination criterion of the decision tree. In
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this approach, leaf nodes exceeding a number ` of training
examples are only allowed if they are homogeneous, i.e. all
training examples share the same label. Since classification
is only required on inhomogeneous leaf nodes, the runtime
complexity is O(`3) for each node. It can be shown that the
overall runtime complexity hence reduces to O(n log n +

n`2) (building a tree and additional O
(
n
`

)
Gaussian pro-

cess classifiers) for the whole training step including the cal-
ibration method proposed in Section 3.4 (see Table 1). The
parameter ` thus enables a trade-off between accuracy and
efficiency (arriving at the full GP classifier for ` = n).

In order to avoid overfitting, the standard decision tree
can be replaced by a random decision forest (RDF [1]). This
architecture is based on multiple trees, each of which is trained
on a randomly drawn training subset. Moreover, a further
randomization can be introduced by using a random feature
subset for each node. The resulting classifier is known for its
high stability with respect to input and label noise [1]. For
a complexity assessment regarding the combination of a GP
classifier and RDF, we refer to [13].

In the following, we use the acronyms DT-GP and RDF-
GP to refer to GP classifiers augmented by decision trees
and random decision forests, respectively.

4.2 Prediction

Classifying a new test example with DT-GP is straightfor-
ward. The test example first finds its path through the de-
cision tree by checking the decision stumps in each inner
node. Finally, the GP classifier associated with the resulting
leaf node is evaluated and returns the classification result as
well as scores for each category. For RDF-GP, the random-
ized version of our approach, the scores returned by each
tree in the forest are summed up and the class with the high-
est score is returned as a classification result. In total this
yields an asymptotic runtime of O(log n+ `2) for each test
example (see Table 1).

5 Experiments

The results of the following experiments can be summarized
as follows:

1. Tree-based Gaussian process classifiers can outperform
previously used machine learning methods for semantic
segmentation tasks.

2. The behavior of DT-GP and RDF-GP strongly depends
on the amount of label-noise and the intra-class variance
of the classification task.

3. Probability calibration can improve the classification re-
sults for semantic segmentation.

4. Our method outperforms the approaches of [47] and [46]
that exploit structure information of facades with condi-
tional Markov random fields.

5.1 Experimental Datasets

For our experiments, we follow [12] and use the eTRIMS [20],
LabelMeFacade and the Paris [35] databases. The eTRIMS
database contains 60 and LabelMeFacade 945 pixelwise la-
beled images. The split in 100 training images and 845 test-
ing images for LabelMeFacade is the same as used in [12].
For the eTRIMS dataset, we use the same split proposed by
[47] where they use ten different random splits into 40 im-
ages for training and 20 for testing. In the Paris dataset, we
use the same split as introduced by the authors of [35] in 20
training images and 84 for testing. A detailed description of
the experimental setup is presented in the next section.

5.2 Experimental Setup

In our framework, we utilize mean shift [8] as unsupervised
segmentation method and Opponent-SIFT [27] for extract-
ing local features. For classification, any classifier which can
handle the large number of training examples can be used.
In our setup, we apply the combined classifiers introduced
in Section 4 (DT-GP and RDF-GP). For the eTRIMS data-
set, we compute local features on five different scales on a
5 × 5 pixel grid leading to 19,275 training examples and
1,633,240 examples for testing. A higher number of train-
ing and test examples (22,976 and 3,140,040) was derived
from the LabelMeFacade dataset using a 20× 20 pixel grid.
This large number of examples for training cannot be han-
dled by a standard Gaussian process classifier, but by a DT-
GP classifier. Note that due to the imbalanced nature of the
databases both training sets are restricted to have equal num-
bers of training examples for each category arriving at above
numbers.

For RDF learning, we use the following settings. At each
node the data is split by decision stumps optimized by em-
ploying the mutual information criterion. The maximal depth
of each tree is 10 and the number of trees is 5. As shown in
[13], the choice of the parameter highly depends on the de-
sired recognition performance and computational speed. As
a trade-off between both criteria we are using 500 examples
as the minimum number of examples in each leaf.

For evaluation, we use two different performance mea-
sures. Whereas the overall recognition rate denotes the frac-
tion of correctly classified results, the average recognition
rate computes the mean of all class-specific recognition rates
such that all categories have the same impact on the perfor-
mance.
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Table 2 Recognition rates of our experiments with different classifiers in comparison to previous work. In contrast to [12], we used random splits
of training and testing for the eTRIMS dataset to allow for fair comparison with [47] and [46].

dataset approach average recognition rate overall recognition rate
eTRIMS Yang and Förstner [47] (CRF) 49.75% 65.80%

Yang and Förstner [46] (HCRF) 61.63% 69.00%
RDF [12] 63.68% (±1.25) 68.86% (±1.36)
SLR [12] 65.57% (±2.47) 71.18% (±2.69)
DT-GP 72.13% (±0.65) 74.96% (±0.25)
DT-GP CALIBRATED 72.36% (±0.55) 75.05% (±0.35)
RDF-GP 67.88% (±2.19) 65.95% (±1.08)
RDF-GP CALIBRATED 66.71% (±0.35) 63.59% (±0.53)

LabelMeF RDF [12] 44.08% (±0.45) 49.06% (±0.52)
SLR [12] 42.81% (±0.89) 48.46% (±1.58)
DT-GP 43.52% (±1.04) 42.63% (±1.02)
DT-GP CALIBRATED 41.86% (±1.34) 43.52% (±2.10)
RDF-GP 51.47% (±0.09) 40.32% (±0.09)
RDF-GP CALIBRATED 51.11% (±0.09) 51.10% (±1.13)

Paris Teboul et al. [34] (RDF) 55.00% 52.57%
Teboul et al. [34] (grammar-based) 77.00% 82.14%
Teboul et al. [35] (grammar-based) 84.14% 84.21%
DT-GP 58.38%(±0.56) 62.25% (±0.88)
DT-GP CALIBRATED 57.68% (±0.77) 61.86% (±0.81)
RDF-GP 63.20%(±0.20) 66.44% (±0.42)
RDF-GP CALIBRATED 62.25% (±0.04) 65.86% (±0.07)

Our approach is compared to the methods of [35,46,
47] and standard classifiers, like sparse logistic regression
and random decision forests [12]. Note that we do not use
any conditional random field models or any other method
used to incorporate local context information as done in sev-
eral other related work [10,16,23]. However, we believe that
those methods would benefit from integrating the output of
our non-linear classifier as an unary term respectively as ini-
tialization for a grammar model [34,35,36]. A comparison
with standard GP without tree decomposition was done in
[13] and it turned out that the performance is comparable.
For semantic segmentation, this comparison is not possible,
due to the large number of training examples.

5.3 Results and Evaluation

The results of the experiments are listed in Table 2. Along
with DT-GP we give an overview of the results from [12]
for the sparse logistic regression (SLR) and the random de-
cision forest (RDF) for the eTRIMs and the LabelMeFacade
dataset and an overview of the results from [34,35] for the
Paris dataset.

In our experiment the runtimes for the DT-GP (7.8s per
image) and for the RDF-GP with five trees (19.14s per im-
age) were longer as for the simple RDF (2.10s per image).
But this fits very well to our expectation and the experimen-
tal evaluation results from [13]. Please note that, as men-
tioned above, it is not possible to apply standard Gaussian

processes to this high amount of features on current hard-
ware.

For the eTRIMS database, the DT-GP classifier clearly
achieves a higher average recognition rate compared to SLR,
RDF, and RDF-GP. On the LabelMeFacade dataset, RDF-
GP leads to the best recognition rates while the determin-
istic variant DT-GP does not improve upon state-of-the-art
classifiers used in [12].

This leads us to the question why DT-GP and RDF-GP
exhibit such an opposite behavior in their recognition per-
formance. By taking a closer look on the data, the following
can be noticed: there are severe differences in the amount
of label-noise between both datasets. Whereas the eTRIMS
database was manually labeled with care focusing on consis-
tency, the LabelMeFacade dataset was derived by combining
annotations of several non-experts [12] who often missed to
label several important parts of a facade. As stated by [1]
random decision forests avoid overfitting and are thus robust
to the shortcomings of the LabelMeFacade dataset, which
contains high label-noise. The DT-GP uses all available in-
formation in the training data in a deterministic manner to
build a supervised pre-clustering. Since eTRIMS provides
nearly perfect ground-truth data, a suitable partitioning of
the feature space can be successfully estimated.

In the Paris dataset our approaches outperforms the ba-
sic randomized decision forest approach from [34] signif-
icantly. However, the shape grammars from Teboul et al.
[34,35] tends to significantly better results than the Gaus-
sian Process approaches. This is of course due to the hard
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Original Ground-truth RDF SLR DT-GP RDF-GP

building car door pavement road sky vegetation window unlabeled

Fig. 4 Example images from eTRIMS (first four rows) and LabelMeFacade database (last three row) and corresponding results obtained by
random decision forest (RDF) [12], sparse logistic regression (SLR) [12], decision trees augmented by Gaussian processes (DT-GP), and random
decision forest augmented by Gaussian processes (RDF-GP). DT-GP and RDF-GP/LabelMe use the proposed probability calibration. Note the
correct recognition of the door in the first row by DT-GP which was not labeled in the ground-truth data. Furthermore, the results shown in row
five demonstrates the disadvantages of our completely local classifier in complex scenes.
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building 66.1 6.8 9.1 5.6

car 57.4 5.7 9.2 5.2 15.3

door 11.8 66.4 6.6 14.4

pavement 10.2 9.3 52.4 24.3

road 20.3 71.6

sky 99.5

vegetation 86.4

window 15.2 73.6

(a) Our method: DT-GP

building 71.0 10.0 12.0

car 12.0 35.0 12.0 11.0 30.0

door 42.0 16.0 6.0 8.0 27.0

pavement 11.0 15.0 22.0 36.0 14.0

road 8.0 44.0 35.0 9.0

sky 13.0 78.0 8.0

vegetation 18.0 66.0 7.0

window 19.0 75.0

(b) Yang and Förstner [47]

building 67.0 8.0 11.0

car 17.0 36.0 11.0 9.0 26.0

door 50.0 14.0 8.0 7.0 16.0

pavement 6.0 85.0

road 11.0 21.0 53.0 15.0

sky 11.0 80.0 8.0

vegetation 9.0 78.0 6.0

window 15.0 80.0

(c) Yang and Förstner [46]

building 52.7 15.8 16.2

car 8.3 40.1 13.7 6.0 6.5 18.7 6.6

door 14.5 31.1 14.0 38.4

pavement 16.6 7.0 43.2 22.0 9.2

road 8.6 66.3 15.4

sky 99.6

vegetation 86.1

window 11.3 78.8

(d) Random decision forest [12]

building 73.1 5.7 7.3

car 6.1 54.4 11.1 20.5

door 11.9 64.3 18.9

pavement 16.4 7.8 24.0 46.2

road 11.1 83.9

sky 93.5

vegetation 5.7 5.4 77.0

window 17.2 71.4

(e) Sparse Logistic Regression [12]

Fig. 5 Average confusion matrices achieved by our methods and the approaches of [47] and [46] on the eTRIMS dataset. Values are only displayed
above 5%.

coded information in the shape grammar, which also could
be used to improve our results, but this is not the focus of
current paper.

The numbers in Table 2 also validate the third hypothe-
sis, i.e. semantic segmentation with the LabelMeFacade data-
set benefits from the soft decision calculated by the method
presented in Section 3.4. While there is no significant differ-
ence on the eTRIMS dataset, a clear performance boost is
apparent for the LabelMeFacade database, where the overall
recognition rate is increased by 10.68% from uncalibrated to
calibrated RDF-GP.

Another interesting observation, which can be seen in
the results of the eTRIMS dataset, is that we outperform the
approaches of [47] and [46], which exploit the structure of
facades by utilizing a (hierarchical) conditional Markov ran-
dom field. Those techniques can also be used to enhance our
results, however, they are beyond the scope of the current
paper.

Unfortunately, in some cases pure recognition rates do
not allow us to make sufficient statements about visual qual-
ity of the resulting segmentations. For this purpose, Fig. 4
contains a few images from both datasets along with their
ground-truth data and the resulting segmentations calculated
by [12] and our approach. Fig. 5 shows the result for the
same training and testing split of the different methods as
confusion matrices. It can be seen that especially the dis-

crimination between door and window benefits from the in-
corporation of the DT-GP method into the semantic segmen-
tation framework. The matrices also highlight cases that are
still difficult to differentiate, such as pavement and road or
window and building.

6 Conclusions and Further Work

In this work, we presented an approach to semantic segmen-
tation that allows accurate prediction for very large datasets.
Our method employs a fast Gaussian process (GP) based
classifier which relies on a pre-clustering of the input space
using decision trees. We additionally proposed a fast method
for generating probabilistic outputs in the multi-class set-
ting without resorting to costly inference methods [24]. We
validated our approach on different challenging facade im-
age datasets and compared it to existing work. The results
clearly show that a significant performance boost is achieved
by using our tree-based GP framework. Furthermore, our
probability calculation method can provide an additional per-
formance benefit.

Semantic segmentation with a predefined list of cate-
gories is in general ill-posed in its nature, since there are
always some regions in the image which belong to unknown
categories or where no decision can be made even by hu-
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man annotators. One idea for further work is to use the esti-
mation uncertainty given by the GP classifier to mark such
image areas or to identify outliers in the training data using
leave-one-out estimates [24].

Another direction for future research are semi-supervised
methods, which use all information available in only par-
tially annotated images. In our case the combination of semi-
supervised extensions of random forests [22] and Gaussian
process classifiers [21] seems to be promising.

Facade recognition clearly benefits from additional prior
knowledge, such as periodicity and typical structure. Our
approach is completely local and it would be interesting to
model the dependencies with conditional Markov random
fields [10,16,23,46] and do inference based on our estimated
probability maps. However, facades have a structure that
cannot be completely modeled with standard CRF models,
which are mostly restricted to pair-wise dependencies be-
tween pixels or regions. A solution would be to use gram-
mar techniques [25,32,35,36] or to incorporate topological
constraints by using the minimal perturbation idea of [6].

Apart from facade recognition we are planning to evalu-
ate our methods on remote sensing data and common datasets
of semantic segmentation like MSRC21 and Pascal VOC
[9].

Acknowledgements This work was partially supported by the Grad-
uate School on Image Processing and Image Interpretation funded by
the state of Thuringia/Germany.
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