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Abstract. An important advantage of Gaussian processes is the ability
to directly estimate classification uncertainties in a Bayesian manner. In
this paper, we develop techniques that allow for estimating these un-
certainties with a runtime linear or even constant with respect to the
number of training examples. Our approach makes use of all training
data without any sparse approximation technique while needing only a
linear amount of memory. To incorporate new information over time, we
further derive online learning methods leading to significant speed-ups
and allowing for hyperparameter optimization on-the-fly. We conduct
several experiments on public image datasets for the tasks of one-class
classification and active learning, where computing the uncertainty is an
essential task. The experimental results highlight that we are able to
compute classification uncertainties within microseconds even for large-
scale datasets with tens of thousands of training examples.

1 Introduction

Learning with kernel-based methods is one of the main techniques used in the
area of visual object recognition to cope with the high complexity and difficulty of
this task. Their main limitation is the high computation time for learning as well
as for classifying a new test example. Apart from several (sparse) approximation
methods [1] presented to reduce the number of necessary evaluations, recent
work [2, 3] has shown that for histogram intersection kernels (HIK), several kernel
terms can be efficiently evaluated. This allows for SVM learning and classification
in sub-quadratic and constant computation time, respectively.

A recent work [4] demonstrated how to utilize the inherent properties of the
HIK to speed up Gaussian process (GP) regression [5] allowing for large-scale
Bayesian inference and hyperparameter optimization. In this paper, we extend
the work of [4] in several aspects. First, we show how to perform incremental or
online GP learning in an efficient manner also allowing for estimating hyperpa-
rameter values on-the-fly. Furthermore, we present how to obtain estimates of
the predictive GP variance for large-scale scenarios when confronted with tens of
thousands of training examples. The predictive variance, which is directly avail-
able in the original GP framework, is one of the main advantages of a Bayesian
method and has been used for active learning [6] as well as for one-class classi-
fication [7]. In contrast to sparse GP approaches [1], our proposed methods and
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approximations take every single learning example into account. Evaluations are
done for one-class classification (OCC) and active learning (AL) showing the
benefits of GP variance estimates as uncertainty values as well as the suitability
of our approximations. Summarizing, the contributions of this paper are:

1. We extend [4] towards efficient online learning with GP and HIK to incor-
porate new data over time and to adapt involved hyperparameters.

2. We present and analyze several approximations and methods that are able
to compute the predictive GP variance even for large-scale scenarios with
linear memory demand and linear or even constant runtimes.

In addition, we develop a new active learning query strategy and compare it to
known approaches. The remainder of the paper is structured as follows: first,
we quickly review the work of [4] in Sect. 2, which is adapted towards online
learning in Section 3. Our approximation techniques for efficiently estimating
the GP predictive variance are explained in Sect. 4. A short overview of active
learning using Gaussian processes is given in Sect. 5. Experiments in Sect. 6
show the validity of the approximations as well as the benefits of our approach
for active and online learning. A summary of our findings and a discussion of
future research directions conclude the paper.

2 Fast Gaussian Process Inference with HIK

In this section, we review the Gaussian process framework and explain how to
exploit the histogram intersection kernel for efficient inference.
Gaussian Process Regression and Classification For the fundamental clas-
sification framework in this paper, we use a Gaussian process model [5]. Given
learning data D = {(xi, yi})ni=1, we would like to estimate the underlying la-
tent function f , which maps inputs x to outputs y. The GP framework casts
this problem into a non-parameterized Bayesian formulation by marginalizing
the latent function f and assuming that f is sampled from a Gaussian process
with zero mean and covariance (kernel) function K. If we assume that outputs
y are disturbed by Gaussian noise, i.e., y = f(x) + ε with ε ∼ N (0, σ2

n), we can
directly obtain the predictive distribution N (µ∗, σ2

∗) of the output y∗ for a new
test input x∗:

µ∗ = kT∗ (K + σ2
n · I)−1y = kT∗α , (1)

σ2
∗ = k∗∗ − kT∗ (K + σ2

n · I)−1k∗ + σ2
n , (2)

where k∗∗,k∗, and K are the kernel values of the test input, between training
set and test input, and of the training set itself, respectively. Furthermore, y
denotes the vector containing the output values of the learning set.

In this paper, we consider classification with the GP framework, i.e., we have
discrete outputs (labels) y ∈ {−1, 1}. Although the Gaussian noise assumption
is in this case critical from a theoretical point of view, it has been shown [6]
that applying GP regression directly to discrete labels leads to a powerful clas-
sification method. This technique is called label regression and allows for exact
inference without approximation methods [5]. In the case of multiple classes, we
use the one-vs-all approach as proposed in [6] and also used in [4].
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Exploiting the Histogram Intersection Kernel Inference in the GP frame-
work is costly. Computing the predictive mean in Eq. (1) requires O(n3) for
learning and O(n) for prediction. Furthermore, computing the predictive vari-
ance even involves an asymptotic runtime of O(n2). This prevents its direct use
for large-scale datasets.

To speed up Gaussian process inference, there are multiple methods (see [1]
and references therein). However, nearly all of them rely on approximations and
use only a subset of the learning examples directly. In contrast, [4] showed how
to exploit the intrinsic properties of the histogram intersection kernel (HIK) [2,
3], to speed up GP inference significantly. We briefly review the key points of
their work in the following.

The HIK is defined for non-negative histogram features x ∈ RD≥0 as follows:

KHIK(x,x′) =
D∑

d=1

min(xd, x
′
d) . (3)

Let us first assume that the weight vector α in Eq. (1) has already been calcu-
lated. Computing the predictive mean then reduces to determining the value of
the scalar product of the weight vector and the kernel vector k∗ [2]:

kT∗α =

n∑

i=1

αi

(
D∑

d=1

min(x
(i)
d , x∗d)

)
=

D∑

d=1

( ∑

{i:x(i)
d <x∗

d}

αi x
(i)
d + x∗d

∑

{j:x(j)
d ≥x∗

d}

αj

)
. (4)

As can be seen, we divided the summation in two parts, which depend on the

location of the feature values x∗d in the sorted lists of the training examples x
(i)
d .

Sorted lists are obtained by computing permutations πd during learning. With
these permutations, we can further rewrite the above sum as follows:

kT∗α =
D∑

d=1

( rd∑

i=1

απ−1
d (i)x

(π−1
d (i))

k

︸ ︷︷ ︸
·
=A(d,rd)

+x∗d

n∑

i=rd+1

απ−1
d (i)

︸ ︷︷ ︸
·
=B(d,rd)

)
, (5)

where we defined rd as the location of the feature values x∗d and matrices
A,B ∈ RD×n that do not depend on the test example and can be directly com-
puted during learning. With these matrices, the time needed for calculating the
predictive mean reduces to O(D log n). Furthermore, applying the quantization
idea of [2] resulting in a look-up table T allows for constant runtimes.

As shown in [4], computing products K · v with the kernel matrix can be
done using the same ideas and allows for applying conjugate gradient methods
to estimate the weight vector α. The paper also showed how to perform efficient
estimation of kernel hyperparameters. Due to the lack of space, we refer the
reader to [4] for details. Throughout this paper we refer to the resulting classifier
as GP-HIK. In the following, we show how to extend their methods towards
online learning as well as efficiently computing the predictive variance, which
allows for interesting applications such as novelty detection and active learning.
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3 Fast Incremental Learning of the GP-HIK

The usual pipeline for object recognition systems is to train a classifier on a
given set of labeled examples and apply the resulting model on unseen examples.
Although current research lead to impressive results even on highly challenging
datasets with this strategy [8, 9, 6], it suffers from two main drawbacks: (1) there
is no possibility to exploit labeled examples that are available after the training
process, which consequently neglects potentially useful information, and (2) it
will fail in situations where existing categories vary over time or new categories
become available. Although trivial training from scratch as soon as new data
is accessible would resolve these drawbacks, it suffers from huge computational
costs and does not exploit information about the model currently used. Incre-
mental or online learning methods combine both aspects, namely adapting the
classifier over time while using previously computed models. We show how to
efficiently retrain a GP-HIK in the following.

As presented in [4], training a GP-HIK mainly consists of four stages: (1) sort
training examples in every dimension, (2) compute the weight vector α using an
iterative linear solver, (3) optimize involved hyperparameters, and (4) compute
the matrices A and B and the look-up table T if required. For new training
examples, we can exploit the previous calculations of every step to significantly
speed-up the process of retraining:

(1) We can build on the given sorting of each dimension and find the correct
position of new values in O(log n).

(2) Using the previously calculated α as an initialization for the iterative linear
solver, we can significantly speed-up the process until convergence since the
variations of α are smooth, especially for large training sizes.

(3) Again we can use the optimal parameter settings known so far as an initial
guess to speed up the process of hyperparameter optimization.

(4) For updating the arrays A and B as well as the look-up table T, we only
need to correct entries that are affected by the new examples.

The authors of [4] proposed to use a linear conjugate gradient method as iterative
linear solver and for hyperparameter optimization the downhill-simplex method.
Regarding these algorithms, a proper initialization leads to both fast convergence
rates and stable optima.

Summarizing, we can significantly benefit from previous calculations in every
training step, which is further validated in our experiments in Sect. 6.4. Note
that one could even further speed-up the process of retraining if the optimization
of hyperparameters was done less regularly, since they are typically found to be
much less sensitive to new data than model parameters.

4 Efficient Computations of the Predictive Variance

Up to now, we only considered fast computations and efficient updates of the
predictive mean derived from GP regression. However, in many scenarios such
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as active learning or novelty detection it is important to get an estimate for
the uncertainty of the prediction as well. The uncertainty is mostly measured
in terms of entropy and for Gaussian distributions it is directly related to the
variance. Due to this reason, we develop efficient methods to compute the GP
predictive variance (Eq. (2)) also in large-scale scenarios. As presented in Sect. 2,
the predictive variance σ2

∗ :

σ2
∗ = k∗∗ − kT∗ (K + σ2

n · I)−1k∗ + σ2
n (6)

depends on three terms. While the first and third terms reflect the a-priori
uncertainties k∗∗ = K(x∗,x∗) and σ2

n without considering previously known
training examples, the second term reduces the a-priori uncertainty based on the
similarities between test example x∗ and training examples X. Since this term
is a quadratic instead of a linear form in k∗, the previously presented techniques
for fast computations of scalar products kT∗α [4] can not be applied here. In the
following, we show how to approximate the second term in an efficient manner
using fast kernel evaluations. An overview of the presented approaches as well
as their resulting runtimes and decision functions is given in Table 1.

4.1 Bounds on Quadratic Forms

From linear algebra we know that any real-valued, symmetric matrix A ∈ Rn×n
can be transformed into A = UDUT where D is a positive diagonal matrix
containing the eigenvalues of A and U is an orthogonal matrix of the same size
as A. Therefore, we notice that for any vector x ∈ Rn the following holds:

xTAx = xTUDUTx = x̃TDx̃ =
n∑

i=1

λix̃
2
i . (7)

We denoted with λi the decreasingly ordered eigenvalues of A, i.e., λ1 ≥ . . . ≥
λN , and x̃i contains the projection of x onto the ith row of U , which is the ith
eigenvector of A. As a result, we can bound the quadratic form in Eq. (7) as
follows:

xTAx =
k∑

i=1

λix̃
2
i +

n∑

j=k+1

λj x̃
2
j ≤

k∑

i=1

λix̃
2
i + λk+1

n∑

j=k+1

x̃2j . (8)

Since U is an orthonormal basis, it does not influence the length of vectors, i.e.,
||Ux|| = ||x||. Therefore, we can obtain the following upper bound:

xTAx ≤
k∑

i=1

λix̃
2
i + λk+1

(
||x||2 −

k∑

i=1

x̃2i

)
. (9)

Equivalently, we get the following lower bound considering the k smallest eigen-
values of A and bounding the remaining eigenvalues with the (k+1)th smallest:

xTAx ≥
N∑

j=N−k+1

λj x̃
2
j + λN−k

(
||x||2 −

N∑

j=N−k+1

x̃2j

)
. (10)
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For the special cases of k = 0 in Eq. (9) and Eq. (10), we obtain the well known
bounds for any positive definite matrix A and any vector x of corresponding
size:

λmin(A) ||x||2 ≤ xTAx ≤ λmax(A) ||x||2 . (11)

4.2 RAPU – Rough Approximation of the Predictive Uncertainty

Since the kernel matrix K is symmetric and positive definite, the same holds
for its inverse. Therefore, we can use the previously presented bounds to obtain
suitable approximations for σ2

∗. We start with the special case analysis using
k = 0 in Eq. (10) and arrive at the following approximation:

σ2
∗ = k∗∗ − kT∗ (K + σ2

n · I)−1k∗ + σ2
n

≤ k∗∗ − ||k∗||2 (λmax(K + σ2
n · I))−1 + σ2

n . (12)

In the following, we derive fast computations of the involved terms using prop-
erties of the histogram intersection kernel.

Efficient HIK computation It was already shown [4] that the computation
of λmax can be done efficiently using histogram intersection kernels and the
Arnoldi iteration method. Therefore, it remains to efficiently compute ||k∗||2:

||k∗||2 = kT∗ · k∗ =
n∑

i=1

( D∑

d=1

min
(
x∗d, x

(i)
d

))2
. (13)

If we approximate ||k∗||2 by a lower bound, we still obtain a valid upper bound
approximation for the predictive variance as given in Eq. (12). For this pur-
pose, we observe that especially when dealing with sparse features having only
few non-zero entries, the majority of mixed terms between different dimensions

min(x∗d1 , x
(i)
d1

) ·min(x∗d2 , x
(i)
d2

) will vanish given the histogram intersection kernel.
For a sparsity ratio of 0.1, these are 99% of all terms. Therefore, neglecting the
mixed terms is well justifiable and we obtain a squared Parzen-like expression:

||k∗||2 ≥
n∑

i=1

D∑

d=1

(
min(x∗d, x

(i)
d )
)2

=

n∑

i=1

D∑

d=1

min
(

(x∗d)
2, (x

(i)
d )2

) ·
=
∣∣∣
∣∣∣k̂∗
∣∣∣
∣∣∣
2

(14)

This expression is equivalent to the one in Eq. (4) for squared features and
αi = 1. Therefore, we can directly apply the same fast computation methods as
described in Sect. 2 with squared feature values. Furthermore, we can even use
the same permutations of the learning data and only have to compute a new
matrix Ã ∈ RD×n storing the cumulative sums of squared feature values similar
to A. Finally, for an unseen example x∗, we can compute the squared kernel
vector withinO(D log n) operations or inO(D) time when using the quantization
approach (q-RAPU) presented in [4]. Note that the predictive variance is the
same for all known classes [6], thus, our computation times are efficient even for
extremely large numbers of classes.
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4.3 FAPU – Fine Approximation of the Predictive Uncertainty

In the previous section, we derived squared Parzen-like approximations of the
GP predictive variance using a special case of quadratic form approximations
(see Eq. (12)). Although these scores are efficiently computable using histogram
intersection kernels, the assumption of sparse features is not always valid. In
these cases, using the RAPU-method is not justifiable. Therefore, we derive a
finer approximation scheme based on the general inequalities given in Eq. (10):

σ2
∗ ≤ k∗∗ −

( n∑

j=n−k+1

λjv
2
j + λn−k

(
||k∗||2 −

n∑

j=n−k+1

v2j

))
+ σ2

n (15)

where λj denotes the jth decreasingly ordered eigenvalue of (K + σ2
n · I)−1 and

vj the projection of k∗ onto the jth eigenvector of the inverse kernel matrix.
Since we can not access the inverse kernel matrix, but (K +σ2

n · I) indirectly,
we transfer the previous bound. Therefore, we define µi as the ith decreasingly
ordered eigenvalue of the kernel matrix (K+σ2

n ·I), i.e., λj = 1
µn−j+1

. In addition,

we define νi to be the projection of k∗ onto the ith eigenvector of the kernel
matrix. We further recall that for any symmetric and positive definite matrix A
the eigenvector corresponding to the ith largest eigenvalue µi is the same as the
eigenvector of A−1 belonging to the (n − i + 1)th largest eigenvalue λn−i+1 of
the inverse matrix, and consequently νi = vn−i+1. Therefore, we can express the
approximated variance given in Eq. (15) with the following term:

σ2
∗ ≤ k∗∗ −

( k∑

i=1

1

µi
ν2i +

1

µk+1

(
||k∗||2 −

k∑

i=1

ν2i

))
+ σ2

n . (16)

To compute k eigenvalues and eigenvectors we needO(kT1n) operations using
Arnoldi iteration with T1 as the number of iterations until convergence. In our
experiments, T1 was almost constant about 10 steps for various numbers of
training examples. For the computation of the kernel vector k∗, we have to spend
O(Dn) operations. Projections ν2i of k∗ onto eigenvectors can be computed in

O(n) as well as the norm ||k∗||2. Summarizing, we need O(Dn+kT1n) operations
in total to compute the approximation of σ2

∗ as given in Eq. (16).

4.4 PUP – Precise Uncertainty Prediction

While the previously presented approaches were based on approximations, we
can also exploit the properties of histogram intersection kernels to compute the
exact predictive variance. To obtain the score for a single test example x∗, we
first compute the kernel vector k∗ requiring O(Dn) operations. After that, we
apply an iterative linear solver to compute the vector α∗ = (K+σ2

n ·I)−1k∗. This
takes O(T2Dn) operations where T2 denotes the number of iterations needed for
convergence. In our experiments, we noticed a dependence between T2 and the
condition of the implicit kernel matrix, which is related to n and can be corrected
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Table 1. Overview of the presented approaches to compute the predictive variance σ2
∗.

For details see the derivations in the corresponding sections.

Approach Asymptotic runtime Resulting score

q-RAPU (Sect. 4.2) O(D) k∗∗ −
∣∣∣
∣∣∣k̂∗
∣∣∣
∣∣∣
2

1
λmax(K+σ2n·I) + σ2

n

RAPU (Sect. 4.2) O(D logn) k∗∗ −
∣∣∣
∣∣∣k̂∗
∣∣∣
∣∣∣
2

1
λmax(K+σ2n·I) + σ2

n

FAPU (Sect. 4.3) O(D logn+ kT1n) k∗∗ −
(∑k

i=1
1
µi
ν2
i + 1

µk+1

(
||k∗||2−

∑k
i=1ν

2
i

))
+ σ2

n

PUP (Sect. 4.4) O(T2Dn) k∗∗ − kT∗ (K + σ2
n · I)−1k∗ + σ2

n

GP-standard O(n2 + nD) k∗∗ − kT∗ (K + σ2
n · I)−1k∗ + σ2

n

by adapting σ2
n. After the linear solver, we can compute the product of k∗ and

α∗ in O(n) operations to obtain the second term needed to compute σ2
∗. In total,

we need O(T2Dn) operations to compute the exact predictive variance for an
unseen example during testing.

Summarizing, we are able to efficiently compute the predictive variance with
selectable precision as well as selectable time to spent. In the next section, we
analyze the usability of our methods for the prominent task of active learning.

5 Active Learning with Gaussian Processes

For active learning, one typically has a small set L = {(x1, y1), . . . , (xn, yn)}
consisting of labeled data and an arbitrary large set U = {x̂1, . . . , x̂m} of unla-
beled examples. To obtain a classifier A trained with most informative examples,
one exploits a query function Q that scores each unlabeled example and asks
for the ground-truth label of the example with best score. Consequently, an
active learning scenario is a quadruple (A,Q,L,U). One further distinguishes
query strategies in two groups [10]: exploitative methods utilize examples of L
including the labels and rely on scores derived from outputs of the involved clas-
sifier whereas explorative methods neglect the label information and query new
examples only based on the distribution of the current examples.

For the choice of Gaussian processes, there exist mainly three possible query
strategies so far [6] : (1) the predictive mean Qµ∗(U) = argmin |µ∗(x̂i)| : x̂i ∈ U
is an exploitative method and selects examples possibly close to the current
decision boundary, (2) the predictive variance Qσ2

∗(U) = argmax σ2
∗(x̂i) : x̂i ∈

U , is explorative and selects examples with highest classification uncertainty
regarding the known training examples, and (3) the uncertainty1 Qunc(U) =

argmin |µ∗(x̂i)|√
σ2
n+σ

2
∗(x̂i)

: x̂i ∈ U as a combination of both. The authors of [6] showed

that especially Qµ∗ and Qunc lead to impressive performance gains compared to
randomly querying new samples. In contrast, [11] argued that the Qunc method
can also lead to a loss of performance compared to random picking.

We argue that this is most likely the case due to a drawback in the design
of Qunc: originally, the authors of [6] invented this method to obtain a query

1 Note that in the rest of the paper, the term uncertainty refers to classification un-
certainty, and not to the query strategy introduced by [6].
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function similar to the minimum margin approach suitable for SVMs [12] but
with the additional consideration of the classification uncertainty. However, this
method will tend to pick examples maximal far from the training samples and
not those lying close to the decision boundary between two clusters in the input
space. This behavior is due to the zero mean assumption and the upper bound
of k∗∗ for the predictive variance. To overcome these problems, we propose to
use a criterion that picks examples that both result in small absolute scores and
are additionally slightly similar to currently known training examples:

QUnc+(U) = argmin
(
|µ∗(x̂i)|+

√
σ2
n + σ2∗(x̂i)

)
: x̂i ∈ U . (17)

We experimentally prove the suitability of this query function for the task of
active learning in Sect. 6.5.

6 Experiments

We evaluate our approach on synthetic and real world datasets. Our main find-
ings can be summarized as follows:

1. Our approximation techniques allow for computing classification uncertain-
ties in microseconds while requiring only linear amount of memory.

2. Approximating uncertainties with the presented methods leads to valid scores
and similar or even improved one-class classification results with respect to
the GP baseline.

3. The techniques for incrementally training a GP-HIK lead to significant re-
ductions of computation times compared to learning from scratch and allow
for parameter optimization on-the-fly.

4. Combining our approaches for efficient uncertainty prediction and incremen-
tal learning allows for active learning in an efficient manner.

6.1 Experimental Setup

To obtain a setup as similar to [4] as possible, we represent images with his-
togram features extracted using the toolkit provided for the ILSVRC’10 chal-
lenge2. Vector quantization is achieved using the provided codebook with 1, 000
clusters following the standard bag of visual words approach. Histograms are
L1-normalized. As in [4], we do not include any spatial information. Nonethe-
less it should be noted, that every image representation given as normalized
histograms is suitable for our approach, e.g., the spatial pyramid match kernel
introduced by [8]. If not stated otherwise, we use the FAPU method with k = 2
eigenvectors to compute σ2

∗. For a fair comparison, all experiments are conducted
on a 3.4 GHz CPU using a C++ implementation3 without any parallelization.
In classification experiments, we use the area under the receiver-operator curve
(AUC) for binary setups and averaged class-wise recognition rates (ARR) for
multi-class scenarios.
2 http://www.image-net.org/challenges/LSVRC/2010
3 Source code will be available at http://www.inf-cv.uni-jena.de/en/gp hik.html
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Table 2. Runtimes needed for the computation of the predictive variance using the
presented techniques from Sect. 4 in comparison to the baseline GP on two image
categorization datasets (see Sect. 6.2). * not possible due to excessive memory demand.

Approach 1,500 10,090 50,050
q-RAPU (Sect. 4.2) 13.32µs 33.89µs 33.89µs
RAPU (Sect. 4.2) 5.92ms 62.07ms 266.97ms
FAPU (Sect. 4.3), k = 2 13.35ms 105.37ms 1.15 s
FAPU (Sect. 4.3), k = 8 13.73ms 105.63ms 1.47 s
PUP (Sect. 4.4) 2.11 s 22.92 s > 1min
GP-standard 60.36ms 1.54 s —∗

6.2 Fast Computation of the Predictive Variance

To evaluate the efficiency of our proposed techniques, we perform experiments
on two datasets. The first one is the 15 scenes dataset [8] consisting of 15 classes
with in total 4, 530 images. As a second dataset we choose the part of the large-
scale ImageNet dataset that was previously used for the ILSVRC’10 challenge
with 1, 000 classes each consisting of 1, 000 images. For the small dataset, we
randomly pick 100 examples of each class for training whereas for the large-
scale evaluation we pick 10 or 50 examples resulting in 1 500, 10 090, and 50 050
training examples. Times are averaged over remaining examples.

Experimental results are shown in Table 2. Especially for large-scale datasets,
we obtain a significant speed-up compared to the standard GP computation. For
rapid uncertainty prediction the quantized RAPU methods turns out to be highly
suitable with computation times in the order of microseconds. It should be noted
that the PUP method is relatively slow due to the involved computations of the
iterative linear solver. Although the authors of [4] pointed out the efficiency of
the linear conjugate gradient method for this problem, in our experiments it still
needed some hundreds of iterations until convergence, especially for large train-
ing sets. Therefore, we argue to use the precise method only in cases where time
is not the limiting factor, but the GP baseline can not be computed explicitly
due to the huge memory demand.

6.3 Uncertainty Approximations for One-Class Classification

To demonstrate the adequacy of our approximations, we conduct experiments
in scenarios where the predictive variance is highly beneficial. As demonstrated
by [7], this is the case for one-class classification, where only data from a single
class is available during training. The decision whether or not a new example
belongs to the target class can be made based on the classification uncertainty
for that example. We evaluate our approximations in comparison to the exact
variance on 1, 000 OCC tasks derived from the ImageNet dataset. In each task,
we train the GP classifier with 100 randomly chosen examples. AUC scores are
computed using 50 examples of the target class as well as 50 examples of each
of the remaining 999 classes.

The results are given in Fig. 1. From the results, we clearly see that the
exact computation and the fine approximations with 2 or 8 eigenvectors lead to
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Fig. 2. Comparison of incremental learning and learning from the scratch. Left : clas-
sification results (ARR) of both methods. Right : Corresponding times for retraining.

almost identical results. Interestingly, the rough approximation even improves
the novelty detection results. For an comparison of the predictive variance with
other established methods, we refer the reader to [7]. From our results, we can
conclude that by using our approximation schemes we are able to reproduce or
even improve the results that we would obtain using the exact variance.

6.4 Comparing Incremental and Batch Learning

In Sect. 3, we analyzed how we can efficiently handle new data without the
necessity of retraining the classifier from the scratch. To evaluate the resulting
benefit, we present experiments conducted on the 15 scenes dataset [8]. We
perform multi-class experiments using all 15 classes. In 100 runs, we randomly
pick 10 examples per class as an initialization. During each run, we incrementally
add 1 example per class over 50 iterations resulting in maximal 900 examples
used for training the model. Every iteration consists of training the classifier as
well as optimizing kernel hyperparameters to perform parameter optimization
on-the-fly. Performances are evaluated on a disjoint test set consisting of 50
examples per class. We visualized experimental results in Fig.2.
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From the left plot in Fig. 2, we make the well-known observation that using
more examples is beneficial for building more robust models. In addition, we
notice that the models learned in an incremental manner lead to almost identical
results as those from models trained from the scratch. However, when taking the
computation times given in the right plot of Fig. 2 into account, we obtain a clear
advantage of our incremental learning approach compared to simple retraining.

Summarizing, we are able to efficiently update our model when new data is
available even with an involved parameter optimization, which allows for using
Gaussian processes for large-scale scenarios in lifelong or active learning.

6.5 Active Learning with the GP-HIK

In the previous sections, we observed that using a histogram intersection kernel
allows for rapidly computing classification uncertainties and incorporating new
examples without costly retraining. With these methods on hand, we are able
to efficiently perform active learning with Gaussian processes as explained in
Sect. 5. We give experimental proofs of this fact in the following.

Active Learning on a Synthetic Example We start by considering the
synthetic example of a 2x2 checker board structure. We use positions as features
and add a linear dependent third dimension in order to obtain L1-normalized
histograms. In each run, we sample 200 examples per sector for U . As an initial
training set, we randomly pick 8 examples per class from U . After each query,
we evaluate the resulting performance with 750 examples per sector. We average
results over 100 runs.

Active learning results on the synthetic example are shown in Fig. 3. In terms
of recognition rates, we clearly observe the general trend of Qµ∗ and QUnc to
be superior to random sampling for this scenario. As already noticed in [6] the
predictive variance Qσ2

∗ tends to query outliers and building unreliable models.
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Fig. 4. Active learning results (AUC) on 100 binary classification tasks derived from
the ImageNet dataset. See text below for details. Best viewed in color.

Surprisingly, the proposed strategy QUnc+ (see Eq. (17)) is inferior to random
sampling at the beginning but outperforms it for larger numbers of queries.

In the right part of Fig. 3, the behavior of the different query strategies are
visualized for a single run. We first note that the random strategy spends a lot
of effort in non-informative regions and leads to severe generalization errors. We
again notice that the predictive variance Qσ2

∗ leads to queries far away from the
currently seen examples and results in bad generalizations as well. In contrast,
Qµ∗ and QUnc query examples close to the currently known decision boundaries.
However, QUnc+ is appealing from a visual point of view, since it is able to
resolve wrong decision boundaries as in the bottom right sector by querying
informative examples close to the actual borders. In summary, it is beneficial
to have both, mean and variance, available for the task of active learning to
significantly improve learning rates.

Active Learning on ImageNet We further evaluate our methods on the
challenging real-world ImageNet dataset. For each experiment, we randomly pick
a single positive class as well as four, nine, or nineteen classes serving as negative
examples. Starting with two randomly chosen examples per class, we query new
examples using the proposed methods. Each task is repeated with 100 random
initializations. Final results are achieved by averaging over 100 different tasks.

Experimental results are given in Fig. 4. We first notice that Qµ∗ and QUnc
tend to query similar examples even on this challenging dataset resulting in
almost identical performances. In contrast, our query strategy QUnc+, which
combines predictive mean and variance in a suitable way, leads to a remarkable
gain in performance. Concerning Qσ2

∗ we again obtain interesting results, since
it is inferior to random sampling for a small number of negative classes but
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slightly superior for larger number of classes. As a concluding remark we adhere
that with a suitable combination of mean and variance we can significantly
outperform random sampling even on highly challenging real-world datasets.

7 Conclusions and Future Work

This paper considered incremental and active learning with Gaussian processes
in the presence of tens of thousands of learning examples. A key ingredient is
the estimation of the predictive variance for a new test example, for which we
presented several approximations and efficient methods. Our approach is based
on exploiting the properties of the histogram intersection kernel, which allows
for computing the kernel terms in an efficient manner. Our methods break the
limits of non-parametric Bayesian inference and allow for obtaining complete
estimates of the predictive distribution for a new test example in constant time
and without any sparse approximation of the kernel matrix. Furthermore, we
studied several active learning criteria and showed their suitability and benefits
on synthetic as well as image categorization tasks.

For future work, we plan to improve incremental learning by only updating
parts of the weight vector. In addition it would be interesting to replace queries of
single examples by sets of examples, which allows for non-myopic active learning,
and complement it by adaptive active learning methods to combine single criteria
depending on the dataset used.
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