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Abstract

Semantic interpretation and understanding of im-
ages is an important goal of visual recognition research
and offers a large variety of possible applications. One
step towards this goal is semantic segmentation, which
aims for automatic labeling of image regions and pixels
with category names. Since usual images contain sev-
eral millions of pixel, the use of kernel-based methods
for the task of semantic segmentation is limited due to
the involved computation times. In this paper, we over-
come this drawback by exploiting efficient kernel calcu-
lations using the histogram intersection kernel for fast
and exact Gaussian process classification. Our results
show that non-parametric Bayesian methods can be uti-
lized for semantic segmentation without sparse approx-
imation techniques. Furthermore, in experiments, we
show a significant benefit in terms of classification ac-
curacy compared to state-of-the-art methods.

1. Introduction

The objective of semantic segmentation is pixel-wise
labeling of a given image, i.e., each pixel is assigned to
one of the learned classes. Semantic segmentation is an
essential tool when accurate locations of objects are re-
quired, as needed in robotics, automotive applications,
and street scene analysis. The large variability of the
visual appearance (see Figure 1) requires a high model
complexity. However, a common approach is to clas-
sify local features with only linear methods [2]. In con-
trast, we propose a semantic segmentation method using
a Bayesian kernel method, which is able to learn com-
plex non-linear models from thousands of local patches.

Kernel methods, e.g., SVMs or Gaussian pro-
cesses [7], come along with the drawback of time-

Figure 1. Our approach: histogram fea-
tures allow for using histogram intersec-
tion kernels (HIK) and Bayesian inference
with Gaussian processes.

consuming evaluations of the kernel functions. Espe-
cially for semantic segmentation with several thousands
up to millions of examples for training and testing, these
methods are not directly applicable. A key idea to allow
for non-linear classification is to exploit the properties
of the histogram intersection kernel (HIK) as done by
Maji et al. [6] for fast SVM classification. Furthermore,
Wu [11] showed how to speed up learning with SVMs
and histogram intersection kernels. We adapt both ideas
for Gaussian processes (GP) and show that the special
properties of histogram intersection kernels are highly
beneficial for fast and exact semantic segmentation with
Gaussian process classification [8]. An outline of our
approach is shown in Figure 1.

The remainder of this paper is organized as follows.
We present our framework for semantic segmentation in
Sect. 2. Short introductions to GP and fast kernel evalu-
ations using HIK are given in Sect. 3 and 4. How to en-
able GP inference exploiting HIK properties is figured
out in Sect. 5. Experimental results are shown in Sect. 6
highlighting the suitability of fast exact GP classifica-
tion for the challenging task of semantic segmentation.



2. An outline for semantic segmentation

Semantic segmentation is a challenging task gaining
more and more interest over the last years. Different
ways for solving this problem exist, e.g., incorporat-
ing texton features in a random decision forest frame-
work [9] or applying conditional random fields to model
global dependencies [5]. We focus on a more generic
semantic segmentation method, which does not incor-
porate any additional model-based knowledge like: “a
typical window is rectangular”. Previous approaches
[2, 3] propose a powerful framework for tackling this
task, consisting of four steps: (1) local feature extrac-
tion and clustering, (2) pixel-wise classification, (3) un-
supervised segmentation, and finally (4) the combina-
tion of the classification results and unsupervised seg-
mentation (see Figure 1).

In step (1), local color and texture information are
extracted in a local neighborhood on an equally spaced
grid and in various scales [10]. Based on that, histogram
features are computed using Gaussian mixture models.
These histogram features are classified in step (2) using
methods such as sparse logistic regression (SLR) [2].
In our work, we show how to use Gaussian Processes
equipped with a histogram intersection kernel instead.
An unsupervised segmentation is used in step (3) to get
an over-segmented image. In step (4), the pixel-wise
classification results on the dense grid are smoothed as
introduced in [2]. For every region, the category with
maximum average probability determines its class label
and each pixel in a region is labeled identically. This
leads to object boundaries aligned to image edges and a
homogeneous object annotation.

3. GP regression and classification

We briefly review the GP framework before describ-
ing our modifications necessary to allow for efficient
semantic segmentation with thousands of training ex-
amples. The goal of regression is to estimate a mapping
f between input data, e.g., D-dimensional feature vec-
tors, and target values. Based on n training examples
x(i) ∈ X ⊂ X and their targets yi ∈ R, we are inter-
ested in predicting the unknown target value y∗ of an
unseen example x∗ ∈ X . The Gaussian process frame-
work belongs to the class of kernel methods and in con-
trast to SVM it can be derived completely by proba-
bilistic instead of geometric assumptions. We assume f
to be drawn from a stochastic process, e.g., a Gaussian
Process f ∼ GP(0,K) with zero mean and covariance
function K. If we expect the training data to be dis-
turbed by additive Gaussian noise with variance σ2:

p(yi | fi) = N (yi | fi, σ2) , (1)

the expected posterior value of y∗ can be derived in a
Bayesian manner [7] and requires O(n) operations:

µ∗ = k
T
∗ (K+ σ2 · I)−1y = kT∗α . (2)

We use the notations k∗ as vector containing the kernel
values (k∗)i = K(x(i),x∗) between the test example
x∗ and all training examplesx(i), K is the kernel matrix
of the training data, and y is the vector containing all
training labels.

For classification, we follow the suggestion of [4]
and assume the discrete labels yi to be generated by
a real-valued function. Although neglecting the dis-
crete nature of labels, this strategy leads to analytically
tractable closed-form solutions. To perform multi-class
classification, we use the standard one-vs-all approach
[4] resulting in M binary classifiers. A final decision is
achieved by maximizing over all class scores:

µmc∗ = max
c=1...M

kT∗ (K+ σ2 · I)−1yc , (3)

where yc is the binary label vector for class c.

4. Fast kernel evaluations using HIK

In computer vision applications, the histogram inter-
section kernel (HIK):

KHIK(x,x′) =

D∑
d=1

min(xd, x
′
d) , (4)

is often used to compare histogram feature vectors
x,x′ ∈ RD. It has been shown, that this kernel al-
lows for efficient classification and learning with sup-
port vector machines (SVM) [6, 11]. We review the
important details in the following and show how to per-
form efficient Gaussian process classification based on
these ideas in Sect. 5 as recently done in [8].

Fast kernel calculation Similar to SVM, the GP pos-
terior mean is a weighted sum of kernel values (see
Eq. (2)). The HIK allows for decomposing the sum-
mation in two parts [6]:

kT∗α =

n∑
i=1

αi

(
D∑
d=1

min(x
(i)
d , x∗d)

)

=

D∑
d=1

( ∑
{i:x(i)

d <x∗
d}

αi x
(i)
d + x∗d

∑
{j:x(j)

d ≥x
∗
d}

αj

)
. (5)

To enable fast calculations, we compute permutations
πd for each dimension d which rearrange the training
examples of that dimension in an increasing order:

kT∗α =

D∑
d=1

( rd∑
i=1

απ−1
d (i)x

(π−1
d (i))

k︸ ︷︷ ︸
·
=A(d,rd)

+x∗d

n∑
i=rd+1

απ−1
d (i)︸ ︷︷ ︸

·
=B(d,rd)

)
(6)



with rd being the index of the first example in the or-
dered sequence of dimension d, which is larger than x∗d.
Obviously, a new test example has only n possible lo-
cations in each resulting sequence. If we precompute A
andB in the training step, we just need to find the index
rd for every dimension to compute kT∗α.

Summarizing, for training we needO(Dn log n) op-
erations for a given vector α, which is dominated by
the effort for sorting the examples in each dimension.
Evaluating the score of a new example can be done in
O(D log n). In addition, we can speed up the computa-
tions exploiting sparsity of the data.

Quantization of the feature space To further speed
up the previously presented techniques, we assume
feature values of dimension d to be bounded within
x∗d ∈ [ld, ud]. By quantizing the feature space [6] us-
ing q bins, only q different outputs can occur in the
inner sums of Eq. (6). Having A and B on hand, we
can precompute a lookup table T of size D × q with
O (Dmax(n, q)) operations. As a result of that, we can
evaluate kT∗α by quantizing x∗ in every dimension and
adding up the corresponding entries of T . Therefore,
classification can be done inO (D) operations, which is
independent of the number of examples used for train-
ing. This strategy is especially appealing for the task of
semantic segmentation, where the number of training
examples is very large in general.

5. Efficient GP multi-class classification
with fast HIK multiplications

In this section, we show how to utilize the previously
presented techniques for fast and exact Gaussian pro-
cess inference [8]. As a result of that, we obtain a full
Bayesian model without the necessity of storing the ker-
nel matrix of sizeO(n2) since our memory requirement
is O(Dn) and thus linear in the number of examples.

Efficient computation of weight vector α As re-
viewed in Sect. 3, the weight vectorα for GP regression
can be obtained by solving the linear equation system:

(K+ σ2 · I) ·α = y . (7)

Similar to efficient calculations of kT∗α, we can also
perform fast multiplications with the kernel matrix with
the same ideas as presented in Sect. 4. As a result of
that, we can apply an iterative linear solver, e.g., the
linear conjugate gradient (CG) method, to Eq. (7). Do-
ing so, the asymptotic runtime isO(nD(T1M+log n))
including the effort for sorting of training examples as
mentioned before. We denoted with T1 the number of
iterations used for the CG method, which depends on

Table 1. Recognition rates of our experi-
ments in comparison to previous work.

approach ARR ORR

eTRIMS
RDF [3] 58.67% (±3.14) 64.54% (±1.37)
SLR [3] 65.57% (±2.47) 71.18% (±2.69)
CRF [13] 49.75% 65.80%
HCRF [12] 61.63% 69.00%
GP-HIK 68.68% (±2.07) 68.02% (±2.10)

LabelMeFacade
RDF [3] 44.08% (±0.45) 49.06% (±0.52)
SLR [3] 42.81% (±0.89) 48.46% (±1.58)
GP-HIK 51.18% (±0.08) 54.01% (±0.21)

the condition of the kernel matrix K. If the maximum
norm of the residual drops below 10−2, we also stop the
CG method, even if T1 was not reached yet. Note that
the runtime is linear in the number of classes known
during training, which is a direct result of Eq. (3). After
solving the linear system in Eq. (7), we can quantize the
feature space and build the final lookup table T .

Generalized HIK The histogram intersection kernel
already offers non-linear classification models. How-
ever, it can be generalized by applying a polynomial
transformation to each of the feature values, i.e., instead
of xd we can use xηd with a parameter η > 0 [1, 8]. This
does not violate the computed permutations in Eq. (6).
In our experiments we optimize the hyperparameter η
by cross-validation on a distinct validation split.

Handling unbalanced data Model regularization
with GP is achieved by assuming noise on the train-
ing data (Eq. (1)). To handle unbalanced datasets, we
use class-specific noise levels σ2

neg = 2σ2
(nneg

n

)
and

σ2
pos = 2σ2

(npos
n

)
. For the multi-class case this strat-

egy is performed for every binary classifier. Since the
underlying data is the same for every binary classifier,
the undisturbed kernel matrixK is shared among every
class and the computations still remain efficient.

6. Experiments

For evaluation, we follow [3, 12, 13] and use the
eTRIMS and LabelMeFacade dataset. The splits for
eTRIMS are based on the random splits of [12, 13] and
the split of the LabelMeFacade dataset is the same as in
[3]. All other settings are identical with [3] but the clas-
sifier used, which in our case is non-linear and kernel-
based. We compare our approach (GP-HIK) to ran-
dom decision forests (RDF) [3], sparse logistic regres-
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Figure 2. Example images from eTRIMS (first row) and LabelMeFacade database (second row).

sion (SLR) [3, 2], RDF with conditional random field
(CRF) [13] and its hierarchical extension (HCRF) [12].
As measures of quality we use averaged class-wise
recognition rates (ARR) as well as pixel-wise overall
accuracies (ORR). For a detailed evaluation of neces-
sary runtimes of the GP-HIK we refer the reader to [8].
Note that applying GP in its plain formulation to the
task of semantic segmentation with thousands of train-
ing examples is not possible due to memory limitations.

The results of our method compared to those of state-
of-the-art are shown in Table 1. With respect to overall
accuracies our approach leads to results comparable to
those of state-of-the-art on the eTRIMS dataset. Con-
sidering the average accuracy, our approach clearly out-
performs previous methods. This result is especially ap-
pealing since it shows that we are able to reliably recog-
nize multiple classes known during training. In contrast
to that, previous approaches suffer from the fact to favor
the classes most prominent in the training data.

For the highly challenging LabelMeFacade dataset
the results of our method are significantly better than the
state-of-the-art. We achieve performance gains of 7%
and 5% respectively. Therefore, it is obvious that the
GP-HIK can handle with the intense label noise in the
LabelMeFacade dataset in a suitable way. Some sample
results of our method are shown in Figure 2.

7. Conclusions and future work
In this paper, we presented how to efficiently ap-

ply Bayesian classification using Gaussian processes to
the challenging task of semantic segmentation. Our ap-
proach is built on strategies for exploiting fast compu-
tations of the histogram intersection kernel. In experi-
ments, we presented significant performance gains
compared to state-of-the-art approaches. For future
work, we plan to extend our ideas for fast computations
of the predicted variance, which could be beneficial for
post-processing steps in semantic segmentation tasks.
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