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Abstract

We, the team UKJ FSU, propose a deep learning sys-
tem for the prediction of congenital heart diseases. Our
method is able to predict the clinical outcomes (normal,
abnormal) of patients as well as to identify heart murmur
(present, absent, unclear) based on phonocardiograms
recorded at different auscultation locations. The system we
propose is an ensemble of four temporal convolutional net-
works with identical topologies, each specialized in iden-
tifying murmurs and predicting patient outcome from a
phonocardiogram taken at one specific auscultation lo-
cation. Their intermediate outputs are augmented by the
manually ascertained patient features such as age group,
sex, height, and weight. The outputs of the four networks
are combined to form a single final decision as demanded
by the rules of the George B. Moody PhysioNet Challenge
2022. On the first task of this challenge, the murmur de-
tection, our model reached a weighted accuracy of 0.567
with respect to the validation set. On the outcome predic-
tion task (second task) the ensemble led to a mean out-
come cost of 10679 on the same set. By focusing on the
clinical outcome prediction and tuning some of the hyper-
parameters only for this task, our model reached a cost
score of 12373 on the official test set (rank 13 of 39). The
same model scored a weighted accuracy of 0.458 regard-
ing the murmur detection on the test set (rank 37 of 40).

1. Introduction

An early diagnosis of congenital heart diseases is es-
sential for effective treatment and to prevent irreversible
effects [1]. Unfortunately, especially in developing coun-
tries, providing a diagnosis is often logistically infeasible
[2], e.g., due to a lack of medical professionals in combi-
nation with large geographical distances. In the interest of
improving on this reality, the George B. Moody PhysioNet

2022 challenge [3, 4] calls for an algorithmic prediction
of clinical outcomes and the detection of possible heart
murmurs based on phonocardiograms. Such a system has
the potential to be deployed to perform prescreening of
patients, therefore reducing the number of required ex-
perts. Machine Learning and especially Deep Learning
techniques have proven successful in solving similar tasks,
as was shown by the submissions to the 2016 PhysioNet
challenge [5]. However, contrary to the PhysioNet 2016
challenge, this year’s challenge provides multiple record-
ings of the same patient from different locations, which
opens up the field for a new set of algorithmic approaches.
Our team proposes a deep learning ensemble approach.
Our method consists of four temporal convolutional net-
works with identical architectures, each exclusively trained
on a single recording location. Their intermediate out-
puts are augmented by manually ascertained patient fea-
tures and combined according to the rules of the George
B. Moody PhysioNet Challenge 2022.

The remainder of the paper is organized as follows. Sub-
section 1.1 briefly describes the challenge data sets. Sec-
tion 2 details our method and experimental setup. Finally,
Section 3 summarises the results of our method, before the
article is ended with concluding remarks in Section 4.

1.1. PhysioNet Challenge 2022

The challenge organizers provide participants with a
public training set consisting of multiple phonocardio-
grams with a sampling frequency of 4 kHz from 942 pa-
tients. Moreover, phonocardiograms of 626 different pa-
tients are kept private by the organizers and used as valida-
tion and test data [6]. The auscultation locations at which
the recordings were produced are the pulmonary (PA), the
aortic (AA), the mitral (MA), the tricuspid (TA), or an un-
specified area. Typically, recordings from multiple loca-
tions are available for every patient. Additionally, meta-
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data of the patients, such as age, height, weight, sex, etc.,
are provided. The goal of the challenge is twofold. Firstly,
the developed algorithm should identify whether a heart
murmur is present in the phonocardiograms. To generate
labeled training data, medical experts analyzed the data of
all patients and associated every patient with exactly one
of the following classes: “murmur present”, “murmur ab-
sent” or “unknown”. Secondly, the algorithm needs to pre-
dict the clinical outcome (“normal” or “abnormal”) of each
patient. Again, medical experts were asked to diagnose the
patients accordingly and define the correct labeling. For
further information regarding the challenge, see [3].

2. Method

The proposed ensemble comprises four networks of
identical topology, each specialized in identifying mur-
murs and predicting patient outcome from a phonocardio-
gram taken at one specific auscultation location. They are
trained on recordings from either the PA, AA, MA, or TA.
The motivation behind this division is that most murmurs
are best audible at one location, and some murmurs are
only audible at a specific location [7]. The networks are
trained in a supervised fashion using one expert label for
every patient and each task: murmur present, absent, or
unknown, and normal or abnormal outcome.

The input to a network consists of two parts, a phono-
cardiogram recorded at the corresponding location and a
vector of the patient’s meta-data such as age group (∼ 0.5
months, ∼ 6 months, ∼ 72 months, ∼ 180 months, ∼ 240
months), sex (1: female, 2: male), height in cm and weight
in kg. If one of the features is unknown, it is set to 0.

The phonocardiograms are preprocessed before they are
evaluated by the networks. To suppress some of the
recorded background noises, a Butterworth low-pass fil-
ter of order 6 and cutoff frequency of 400 Hz is applied as
most murmurs fall in this frequency range. Afterwards, the
series is downsampled to a sampling frequency of 1 kHz,
the systolic peak of the first heart cycle is identified, and
an interval of 5 seconds starting at this position is cut out.
In the last step, the this 5 second window is normalized by
a min-max-normalizer.

For the identification of systolic peaks, the following
approach is used. At first, another low-pass filter (cutoff
frequency 4 Hz) and a min-max-normalizer are applied to
obtain the envelope of the rectified signal. Afterwards, the
peaks are detected in this low-frequency signal by finding
all local maxima that lie at least 0.5 seconds apart from
each other. We assume these mark systolic peaks.

Moreover, a spectrogram summarizing the changes in
the frequency domain of the series is computed. To this
end, a short-time Fourier transform with a frame length
of 0.04 seconds, a frame step of 0.016 seconds, a Fourier
transform with a size of 200, and a von-Hann-windowing

is applied to the preprocessed five-second interval of the
phonocardiogram. After preprocessing, we end up with an
audio signal of 5 seconds, a corresponding spectrogram,
and a 4-dimensional feature vector (patient meta data).

The topology of a single network is presented in Fig-
ure 1. At first, the audio signal is processed by two atrous
1D convolutional layers (size: 5, dilation rate: 2, stride:
1, activation: ELU), each followed by max-pooling (size:
2, stride: 2) and batch normalization. The first layer has
64 filters, while the second has 32. Atrous convolution
refers to the filtering with kernels that have holes (weights
are zero at these positions). It was introduced to reduce
the number of computations without reducing the recep-
tive field of a filter [8]. The intermediate result is handed to
a normal convolutional layer without holes/dilation (filters:
2, size: 5, stride: 1, activation: ELU) that is again followed
by max-pooling (size: 2, stride: 2) and batch normaliza-
tion. In parallel, the input spectrogram is processed by two
2D convolutional layers (filters: 16 and 8, sizes: 20×2 and
5× 5, stride: 1, activation: ELU), two max-pooling layers
(size: 4 × 4, stride: 4) and batch normalizers. The results
of the two previously described convolutional branches are
flattened and concatenated into a one-dimensional vector.
During training, dropout with a rate of 0.3 is applied to this
vector before it is further processed by a dense layer with
512 neurons applying the ELU function. At this stage, the
last part of the input, the patient features, comes into play.
They are combined with the 512 activations by concatena-
tion. To get a decision for the murmur task, this vector is
fed to the murmur head of the network. This head consists
of two feed-forward layers of sizes 256 (ELU activation)
and 3 (linear activation). By applying softmax to the last 3
results, one receives a ”probability distribution” y

(m)
pr over

the three murmur classes. For the outcome prediction, the
outcome-head is used. It also comprises two dense layers
with 30 neurons (ELU activation) or one neuron (sigmoid
activation), respectively. The final output is interpreted as
the predicted probability of a normal outcome.

For the training, the training data needs to be subdi-
vided into four parts, one for each network in the ensemble.
E.g., the subset for the aortic network consists of phono-
cardiograms (and corresponding patient features) that are
recorded in the AA. Phonocardiograms that are marked as
“related to a patient with murmurs” but also as “murmur
not audible in this location” are discarded from the training
sets since the true class is ambiguous. Every subset is fur-
ther split into a training (80%) and a validation (20%) part,
where both parts have a similar distribution of murmur la-
bels. During the first phase of each individual training,
the convolutional layers and the murmur head are trained
based on the murmur labels for a fixed number of epochs.
The aim is to minimize the mean of the categorical focal
losses cfl(ytr, y

(m)
pr ) [9] with the help of the RMSProp op-
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Figure 1. Topology of one ensemble network. The numbers in the blocks define the size, the stride, the number of filters
and the dilation rate (if applicable). ELU activation function is used in all layers except for the decision layers.

timizer, where ytr is a one-hot encoding of the true mur-
mur class and

cfl(ytr, ypr) = −α (1− (ytr ◦ ypr))γ log(ytr ◦ ypr)

In this formula, “◦” denotes the dot product and α, as well
as γ, are hyper-parameters.

Since the challenge score of the murmur detection task
weights the correct classification of murmur occurrences
higher than the classification of other classes, we weight
the individual cfls similarly during training (present: 5,
unknown: 3, absent: 1). After the first training phase, the
weights that led to a maximum weighted accuracy on the
validation set are restored.

During the second phase, only the outcome head is up-
dated. It is believed that the early layers can already extract
and combine useful features from the phonocardiogram, its
spectrogram, and the patient data. The weights of the out-
come head are updated with respect to the true outcome
labels, the predicted ones, and the simple binary cross en-
tropy loss (cfl with α = 1, γ = 0). Again, an RMSprop
optimizer is used for a fixed number of epochs before the
weights that lead to the lowest average challenge outcome
cost (cf. [3]) on the validation set are restored. During in-
ference, the outputs of several of the independently trained
networks are used. Every recording available for a patient
is processed by the corresponding network.

Since a murmur might not be audible in all locations, the
global murmur decision is set to “present” if for at least one
recording the local decision is “present”. Given that there
is no local murmur detection, the probability vectors are
averaged to arrive at the final prediction. For the outcome
score we directly average the probability vectors to make
a decision.

2.1. Experiments

In the first experiment, we conducted a five-fold cross-
validation on the public training data. The ensemble nets

were trained for 500 epochs on the murmur task and ad-
ditional 100 epochs on the outcome task. The experiment
was performed exclusively with data from the public train-
ing set. The parameters of the categorical focal loss func-
tion were set to α = 3 and γ = 5, the learning rate for the
first task to η = 0.0001 (β = 0.9) and for the second task
to η = 0.001 (β = 0.9). During the loss computation for
the first task, the errors were weighted with respect to the
correct label (present: 5, unknown: 3, absent: 1).

For the second experiment, our system was executed by
the challenge organizers and trained on the public train-
ing set. Afterwards, the network was evaluated against the
private validation set.

Intermediate results suggested that shortening the input
window to 1.25 seconds leads to better validation outcome
scores while impairing the murmur detection. Hence, we
also asked the organizers to evaluate this adapted version
against the validation set as a third experiment.

As only a single model could be submitted for the final
ranking with respect to the test set, we decided to use the
previously described adapted version for this final ranked
experiment.

3. Results

The results achieved during the first two experiments
are summarised in Table 1. On the private validation set,
our model reached a weighted accuracy of 0.567 concern-
ing the murmur detection task, while it led to an average
outcome cost of 10679. During the third experiment, the
model with shorter input windows reached a weighted ac-
curacy of 0.398 and an outcome score of 9031 on the val-
idation set. The ranked experiment led to the results de-
tailed in Table 2.

4. Discussion

In this work, we presented our approach for the Phys-
ioNet 2022 challenge and its results. Our approach per-
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Metric 5-CV Validation
Weighted Accuracy (m) 0.524 0.567
Accuracy (m) 0.574
F1 (m) 0.401
AUROC (m) 0.573
Outcome score (o) 13225 10679
Accuracy (o) 0.568
F1 (o) 0.486
AUROC (o) 0.524

Table 1. Results achieved during the first two experiments.
Rows marked with (m) correspond to the murmur detec-
tion task while rows marked with (0) correspond to the
outcome prediction task. The second column holds the av-
eraged results of the five-fold cross-validation (5-CV), and
the third holds the evaluation on the private validation set.

Metric Train Valid. Test Rank
Weighted Accuracy (m) 0.863 0.398 0.458 37/40
Accuracy (m) 0.933 0.678 0.73
F1 (m) 0.871 0.357 0.379
AUROC (m) 0.978 0.603 0.576
Outcome score (o) 9417 9031 12373 13/39
Accuracy (o) 0.65 0.517 0.539
F1 (o) 0.625 0.505 0.481
AUROC (o) 0.829 0.614 0.565

Table 2. Results achieved during the final ranked exper-
iment. Rows marked with (m) correspond to the murmur
detection task while rows marked with (0) correspond to
the outcome prediction task. The second, third and fourth
column correspond to the evaluation on the full training,
validation and test sets, respectively.

forms better on the outcome prediction task than on the
murmur detection task. We assume that the features ex-
tracted by our models from phonocardiograms and corre-
sponding spectrograms are especially useful for the clin-
ical outcome prediction and, thus, are a broad summary
of the cardiac health of patients. We expect that an ex-
tended hyperparameter search can further improve the per-
formance of our method, especially for the murmur predic-
tion. Furthermore, we did not leverage any kind of transfer
learning, which could also increase the performance of our
method in the future. Finally, specialised data augmenta-
tion strategies for phonocardiograms could mitigate pos-
sible overfitting issues. Despite this, we believe that our
approach represents a step towards the automatic detection
of congenital heart diseases.
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