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Abstract. When modeling technical processes, the training data regu-
larly come from test plans, to reduce the number of experiments and to
save time and costs. On the other hand, this leads to unobserved combi-
nations of the input variables. In this article it is shown, that these unob-
served configurations might lead to un-trainable parameters. Afterwards
a possible design criterion is introduced, which avoids this drawback.
Our approach is tested to model a welding process. The results show,
that hybrid Bayesian networks are able to deal with yet unobserved in-
and output data.
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1 Introduction

Modeling of technical processes is applied in many parts of industrial every-
day life, e.g. in model based control and quality management. Particularly in
the domain of manufacturing, there are two, closely intertwined problems. We
have to tackle with few, in most of the cases incomplete, data. The reason is
the way tests are executed. Each test causes expenses for material and for the
staff, carrying out the experiments. This cost pressure leads to test plans [1, 10].
The main idea is to make less experiments, knowing that the used test plan is
not able to reveal all possible interdependencies. Particularly interdependencies
between multiple parameters are neglected. Therefore only in seldom cases all
possible combinations of variables are tested.

Modeling with Bayesian networks(BN) has many advantages, e.g. the pos-
sibility of structure learning and to deal with hidden variables. But one of the
drawbacks in Bayesian modeling is the sensitivity to missing combinations, if
parameters, representing these combinations, are part of the network. In the
training process, these parameters are trained as usual, that is depending on
the frequency of the occurring cases. When the output for a yet unpresented
example has to be predicted, this results in a faulty output.

As the usage of discrete nodes causes this phenomenon, a possible solution
would be the restriction to continuous nodes, with the disadvantage, that only
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linear functions could be modeled. Additionally it is not possible to treat each
random variable as continuous random variable. The other possibility is to rely
purely on a-priori knowledge. But in most of the cases it will be hard to get
exact a-priori knowledge. This article shows the critical structures, to be deduced
from the test plan, and discusses possible workarounds. The method is applied
to the problem of modeling a welding process with 6 input parameters and one
output parameter. Some of the parameters are discrete, others are continuous,
thus a hybrid Bayesian network[2, 7, 8] is used for modeling. This enables us to
model also nonlinearities. In our example two different methods are used. For
one input parameter, the squared value is used as additional input. On the other
side it is possible to represent a variable both as discrete and continuous random
variable. Using this method also steep slopes can be modeled, e.g. the failure of
the welding process. The combination of discrete and continuous nodes allows
also the approximation of nonlinear functions by multiple Taylor series [3].

This article is structured as follows. Section 2 gives a brief introduction to
hybrid Bayesian networks, section 3 deals with modeling of manufacturing data
derived from test plans. Afterwards, in section 4, the data to be modeled are
introduced. Section 4 is followed by the applied model and the obtained results.
In comparison to other modeling methods, like neural networks and classification
trees, we are able to predict both input and output signals with the same model,
as the Bayesian network represents a joint distribution of all in- and output
parameters, so that arbitrary variables are predicted by marginalization. The
article finishes with a conclusion which contains an outlook to further research.

2 Bayesian Networks

Bayesian networks represent a multivariate distribution P (X1, X2, · · · , Xn) of
random variables X1, X2, · · · , Xn. In this article P denotes a distribution of
discrete random variables, p is used for continuous ones. Using the Bayes rule,
the probability of a configuration x1, · · · , xn, i.e. an instantiation Xi = xi of every
random variable, can be calculated as a product of conditional probabilities [15]

P (x1, x2, · · · , xn) = P (x1)
n∏

i=2

P (xi|xi−1, · · · , x1) . (1)

In many cases, Xi does not depend on all random variables X1, · · · , Xi−1, but
only on a subset Pa(Xi) ⊆ {X1, · · · , Xi−1}, called the parents Pa(Xi) of Xi.
Using these independencies the chain rule (1) rewrites to

P (x1, x2, · · · , xn) = P (x1)
n∏

i=2

P (xi|pa(Xi)) , (2)

where pa(Xi) denotes the instantiation of Pa(Xi). Usually the dependencies
between random variables are represented in a acyclic graph, with the random
variables as nodes and directed edges from the parents Pa(Xi) to Xi. As an



example, figure 1 might be used. The parents of node H are {X1, X2, X3, X4},
thus there are edges Xi → H from Xi to H . It is assumed, that H is a hidden
node, which are drawn in shaded manner in this article. To distinguish discrete
nodes from continuous ones, the former are drawn as circle or ellipse, the latter
as square or rectangle. The next section discusses so called hybrid Bayesian
networks, where discrete and continuous nodes are used at the same time.

2.1 Hybrid Bayesian Networks

At the beginning of the development of BNs, only networks with discrete nodes
were used. That means that discretization is needed for all continuous variables.
Additionally, a great number of parameters is required, to describe exactly a
BN with discrete nodes. If only continuous nodes are regarded, it is possible to
use a Gaussian network instead, where normal distributions are associated with
every random variable, whose mean is calculated as linear combination of its
predecessor’s values. I.e. the distribution p of a random variable X with parents
Y is

p(x|y) = N (µX0 +wXy, σX) (3)

with N as the one-dimensional normal distribution. When y = 0 the mean of the
normal distribution is µX0 , wX is the weight vector between Y and X . Of course,
it is possible to regard X also as a multidimensional random variable, but, for
the purpose of the article, it is sufficient to use a one-dimensional distribution.
If not only continuous variables are used, or if non-linearities are required, these
needs are met by hybrid BNs as described in [7, 8, 11, 14].

The set of nodes of a hybrid BN contains both discrete and continuous nodes.
Discrete nodes, having only discrete predecessors, are handled as usual. I.e. each
node X stores the conditional probabilities P (X |Pa(X)) in a table, which is
used for calculation of joint and marginal distributions. Major changes are made
for continuous nodes, having both discrete and continuous predecessors. As in
Gaussian networks, the values of continuous nodes are still assumed to be normal
distributed, but this time a mixture of normal distribution is used with P(xp),
the probability of the parents having configuration xp, as the mixing coefficients.
As defined in [4], a configuration for a set of nodes is a set of states with exactly
one state for each variable. Therefore, there are different means µX0 [xp], weights
wX [xp] and standard deviations σX [xp] for every possible configuration. The
distribution of node X , given that the continuous parents Y have value y and
configuration xp for the discrete parents, is

p(x|y, xp) = P(xp)N (µX0 [xp] +wX [xp]y, σX [xp]) . (4)

If a continuous node has no discrete parents, there is only one possible config-
uration, and the equation is reduced to the pure Gaussian case. It remains the
problem, whether discrete nodes are allowed to have continuous parents. Some
authors, e.g. Lauritzen [7] [8] and Olesen [14] assume, that there are no such
nodes allowed, which simplifies training of BNs. At the moment there are two
main approaches, discussed e.g. in [12], to deal with continuous predecessors of



discrete nodes. In [9] the junction tree algorithm, used for inference in BNs, is
expanded for BNs with continuous nodes as predecessors of discrete nodes.

3 Modeling of Manufacturing Processes

In section 2.1 an introduction to the parameterization of hybrid Bayesian net-
works is given. The reader should keep in mind, that for every possible config-
uration xp of the parent nodes there is a set of parameters to be adapted. For
a discrete node X this is usually a table with conditional probabilities P (x|xp),
for continuous nodes the weights w[xp], means µ[xp] and dispersions σ[xp] have
to be stored. This section gives a brief overview about test plans, mainly to show
that the used test plan leads to special restrictions on the used structure.

Test plans are used to save time and money for a lot of tests, which might
be redundant. The reason might be, that also the influence of parameter combi-
nations is explored, which have no effect on the output parameter, according to
the engineer, executing the test. Imagine a simple, linear process with four input
parameters X1, · · · , X4, and one output Y . Suppose that combinations of three
different variables have no influence on the output of the experiment. In this
case, the test plan in table 1 can be used, where the input of X4 is calculated as
the product of X1 to X3. The symbols ’-’ and ’+’ represent a low respectively

Table 1. Example of a simple test plan

X1 X2 X3 X4 = X1 · X2 · X3 Y

- - - -
- - + +
- + - +
- + + -
+ - - +
+ - + -
+ + - -
+ + + +

a high instantiation of the random variables. The product · is defined, so that
the product of two different values is negative, the product of two equal values
is positive. As X4 is the product of X1, · · · , X3, there is no way to distinguish
between the influence of X4 and the combined influence of X1, · · · , X3, which is
no drawback, as it was supposed that X1 · X2 · X3 has no influence on the out-
come of the experiment. On the other hand, 50% of the experiments are saved.
As test plans are applied regularly to explore the interdependencies within a
process, it is necessary to discuss the effect of test plans in Bayesian modeling.
Simple BNs to represent the influence of Xi on Y are depicted in figures 1 and
2. The hidden node H on the left hand side has as parameter a table with all



X1 X2 X3 X4

Y

H

Fig. 1. Critical node H

X1 X2 X3 X4

Y

Fig. 2. Critical node Y

X1 X2 X3 X4

X12 X24 X23 X34

Y

Fig. 3. Robust model

conditional probabilities P (h|x1, x2, x3, x4), including e.g. P (h| −−−−), which
represents a never tested combination.

The same problem occurs in figure 2, where the parameters µY [x1, x2, x3, x4]
and σY [x1, x2, x3, x4] can not be trained. Of course a pure continuous model will
solve the problem, but in this case only linear models can be represented.

Models, as depicted in figure 3, might help. They show the following features:

– There is no node representing the influence of a combination of 3 variables.
When designing the test plan, it is concluded, that these combinations have
no influence on Y .

– For all nodes with discrete parents all configurations of the parents are ob-
served.

Thus the preconditions for a robust modell are fulfilled. The reader should notice
that this consideration provides also a criterion for structure learning, which can
easily be tested. The variance analysis, usually used to evaluate tests, provides
further hints for the structure of the Bayesian network.

The principles discussed in this section are applied to develop a model of the
welding process discussed in section 4. The resulting model, together with the
result, is presented in section 5.

4 Welding

The welding process is part of a shortened process chain for the manufacturing
of complex, hollow bodies, that consists of the processes hydroforming, cutting,
and joining by laser beam welding. Two blanks are inserted in a hydroforming
tool, formed by pressing fluid between the blanks and cutted by shear cutting.
The next process is the welding of the flange by a welding robot that is integrated
in the forming tool. For a description of the complete process chain see [5, 6].

The first input parameter of the welding process is the type of weld (Confer
figure 4 for a complete list of the used parameters). Lap edge joint and lap seam
joint were investigated. Also, the number of welds is from interest. To achieve a
closed impermeable weld, the beginning of the weld has to be welded again at



Fig. 4. In- and output parameters of welding process

the end of the process. This double welding may have a negative effect on the
welding quality. Furthermore, the necessary accuracy of the welding robot has to
be examined by determing the influence of defocussing and of a weld offset. The
results of these experiments are depicted in figure 5. Since the welding process
takes place just after the hydroforming and cutting, the blanks are contaminated
with hydroforming media and lubricant. The effect of this contamination has to
be determined. To ensure a constant welding velocity, a setting angle of 30◦ must
be applicated in the corners of the flange. The last and surely most important
input factor is the welding velocity. The effect of the velocity is displayed in figure
6. The output parameters of the welding process are welding depth, tensile force,
pore volume, formability and impermeability of the weld. In this article, only
the dependency of the tensile force on the input parameter is modeled.
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5 Results

The principles discussed in section 3 are applied to model the welding process,
introduced in section 4. A variance analysis shows, that the contamination has
nearly no effect on the tensile force and that both, the angle, and the type
of joint, have an influence on the tensile force. Thus, there is no node for the
contamination.

When developing the structure of the BN, the problem occurs, that there are
no data available for the lap seam joint, together with an angle of +/ − 30◦. So
the problem of untrainable parameter occurs. To avoid the risk of failure, the
two unobserved configurations are mapped with equal probability to neighboured
configurations. E.g. the lap seam joint with an angle = 30◦ is mapped to the lap-
edge joint with an angle of 30◦, and the lap seam joint with 0◦. This mapping is
done by the deterministic node H2. This means, that the conditional probability
table, which determines the behaviour of H2 is not changed during training.

Figure 6 shows, that the tensile force depends nonlinearly on the velocity v.
To enable the model to learn this nonlinearity, an additional node, representing
the squared velocity, is added. The mean of node FH1 and the weights of the
edges v → FH1, and v2 → FH1, are initialised, so that F is approximated by a
regression polynomial of second order. The used model is depicted in figure 7,
the obtained results for an angle of 0◦ are shown in figure 8. The tensile force

Jointtyp Angle Offset

F

DefocusingNb. Joints v2 v

H1 H2 H3

FH1

FH2

Od Dd

Fig. 7. Model for the tensile force

depends also on the number of joints. Node H1 represents the difference of the
tensile force for a second joint. That is H1 = 0 for one joint and larger than 0 for
a second joint. The results of FH1 and H1 are added, i.e. both links H1 → FH2

and FH1 → FH2 are initialised to 1, so that FH2 represents the tensile force for
intact seams.

The failure of the seam is caused by the offset or defocussing being larger
than a threshold. This threshold is represented by the two means of Offset
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and Defocusing, triggered by the nodes Od and Dd respectively. Again, a good
initialisation is essentially.

The discrete node H3 has two states, representing an intact or defective
joint, which triggers the node F . In case of an intact joint the tensile force is
determined by FH2, otherwise the node F predicts approximately the mean of
the tensile force of all defective joints. For a comparison of the predicted tensile
force, depending on the offset and on the defocussing, see figures 9 and 10. The
results in figure 10 are best for an offset of 0 mm, as the largest part of the
experiments are executed with that offset.
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To test our model, the Bayesian network was trained with the EM algorithm,
which is already implemented in the BN-toolbox [13], which was used for the
experiments described in this article.

As training data, we got 48 blocks with 6 examples each. To test, whether our
model is able to make predictions also for unseen configurations, we trained our
net with 47 blocks. Afterwards we compare the predictions with the measured
values of the remaining block. To calculate the predictions, all the remaining,
observed, variables are entered as evidence and the mean of the marginal distri-
bution is taken as prediction. For continuous random variables (v, F ), we used
the relative error

ec
r =

|vm − vp|
vm

100% (5)

as quality criterion. In equation (5) vm denotes the measured value, and vp

the predicted one. For discrete random variables (Number of joints, joint type,
angle), the error is defined as quotient between the number of misclassifications
nm and the total number of classifications nt.

ed
r =

nm

nt
100% . (6)

The results are given in table 2. For the offset and defocusing exact predictions

Table 2. Relative error

Variable Number of joints Velocity Angle Joint type Tensile force

er 37.7% 22.1% 50.4% 15.5 % 17.04%

can not be expected. Only predictions for the equivalence class, e.g. failure caused
by offset or not, can be made. For the offset there are 3 misclassifications in the
48 blocks tested. For the defocusing 2 blocks are not correctly classified.

6 Conclusion

The usage of test plans is widely spread in manufacturing. Even simple test
plans result in unobserved configurations, as the number of experiments grows
exponentially with the number of variables.

This article has shown, that unskilful modeling might lead to a complete
failure of the model. In contrary, when all configurations of discrete parents are
observed, this results in a stable model. This principle is applied to the modeling
of a welding process. The results show, that the discussed model is able to deal
with evidences, not seen before, e.g. our model is able to predict the tensile
force of yet unobserved velocities and offsets. In comparison to neural networks,
a Bayesian network is also able to predict input variables, when the output is
given. The price for this advantage is a higher effort for modeling, even if there
are lot of structure learning algorithms available.
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