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Abstract. Bayesian networks for the static as well as for the dynamic case have gained an enormous interest
in the research community of artificial intelligence, machine learning and pattern recognition. Although the
parallels between dynamic Bayesian networks and Kalman filters are well known since many years, Bayesian
networks have not been applied to problems in the area of adaptive control of dynamic systems.

In our work we exploit the well know similarities between Bayesian networks and Kalman filters to model
and control linear dynamic systems using dynamic Bayesian networks. We show, how the model is used to
calculate appropriate input signals for the dynamic system to achieve a required output signal. First the desired
output value is entered as additional evidence. Then marginalization results in the most likely values of the input
nodes.

The experiments show that with our approach the desired value is reached in reasonable time and with great
accuracy. Additionally, oscillating systems can be handled. The benefits of the proposed approach are the model
based control strategy and the possibility to learn the structure and probabilities of the Bayesian network from
examples.
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1 Introduction

Bayesian networks (BN) for the static as well as for the
dynamic case have gained an enormous interest in the re-
search community of artificial intelligence, machine learn-
ing and pattern recognition. Recently, BN have been ap-
plied also to static problems in production, since produc-
tion processes become more and more complex so that an-
alytical modeling and manual design are too expensive.
One example for the successful application of BN to a
static system in production are the quality evaluation and
process parameter selection in order to reach an acceptable
quality level [3].

Although the parallels between BN and Kalman fil-
ters are well known since many years, BN have not been
applied to problems in the area of adaptive control of dy-
namic systems. Adaptive control of dynamic systems is
one major problem in production processes. Compared to
classical control methods BN have the advantage that the
model (of the static or dynamic system) can be trained
from examples if the model is not available in analytical
form. During training missing information can be handled
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which makes BN superior to other self adaptive systems
like artificial neural networks. Finally, BN can also solve
inverse problems, i.e. in any case the most likely param-
eters of the system can be computed given information
about some parameters of the system that is entered as ev-
idence in the BN.

In this paper it is shown that BN can also act as con-
troller. We exploit the well know similarities between BN
and Kalman filters to model and control linear dynamic
systems using dynamic Bayesian networks (DBN). We
show, how the model is used to calculate appropriate input
signals for the dynamic system to achieve a required out-
put signal. The desired value is entered as evidence, then,
marginalization results in the most likely values of the in-
put nodes. Additionally, any other parameter of the dy-
namic system can be inferred given the remaining param-
eters as evidence. This procedure together with the well
known training algorithms for BNs allows the realization
of self adaptive controllers which is particularly important
for nonlinear processes.

We focus in the paper on the modeling of stationary,
linear dynamic systems of second order. The extension to
control nonlinear systems, though, is straight forward us-
ing hybrid BN, i. e. a BN using both discrete and continu-



ous nodes. In statistical terms this means that a mixture of
Gaussians is used instead of only one normal distribution
[16].
We show how systems of higher order can be handled by
breaking down the higher order system to a sequence of
second order systems. The structure of the DBN and its
parameters are inferred from an analytical description that
we get from classical control theory in order to evaluate
our results. However, for real world examples, the param-
eters of the BN are learnt from examples.

The experiments show that with our approach the de-
sired value is reached in reasonable time and with great
accuracy. Additionally, oscillating systems can be handled.
The benefits of the proposed approach are the model based
control strategy and the possibility to learn the structure
[4] and probabilities [1] of the Bayesian network from ex-
amples.

This article is structured as follows. In section 2 the
term control system is defined and the analytical descrip-
tions as they are used in control theory are introduced. Sec-
tion 3 deals with Bayesian networks and it is shown how
the parameters of the DBN are obtained using the similar-
ities to Kalman filters, a special type of DBN. The usage
of BNs to generate control signals is explained in section
4. The results obtained with this new type of controller are
presented in section 5.

2 Dynamic systems

A dynamic system may be regarded as a black box with
several input and output signals u respectively q, where
the output does not depend solely on the input signal, but
additionally on an internal state x. Linear, time invariant
systems are regularly described by differential equations
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It is always possible to transform a differential equa-
tion of n-th order to n coupled differential equations of first
order,

dx(t)

dt
= Ax(t) +Bu(t) (2)

q(t) = Cx(t) +Eu(t) (3)

called the state-space description. The transition matrixA
describes the transition from one state x to the next,B the
influence of the inputu on the state. The output q depends
on the state, as described by C and on the input u, de-
picted byE. To get a good impression of such a system it
is helpful to regard the step response of such a system, that

is regarding the output signal q(t) when u(t) is changed
from 0 to 1 at t = 0. This step response is depicted in figure
1 for a system of second order.
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Fig. 1. Step response of a second order system

Regarding figure 1 the reader will notice that a sec-
ond order system may overshoot and needs a long time to
converge to a new value. In this article we will show how
to calculate an input signal, so that overshooting is avoided
and the output settles quickly to its new value. This method
is based on Kalman filter as described in section 3.2.

As a simple example a car with mass M which is ac-
celerated by a force F and slowed down by friction and a
spring is regarded. The friction is proportional to the prod-
uct of a constant b and the velocity v = dx

dt
, the excursionx

of the spring causes a force kx. Thus, the following equa-
tion holds:
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+ kx = F: (4)

By substitution x1 = dx

dt
and x2 = x the example can be

transformed to a system of differential equations of first
order, called the state space representation.
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More details about linear control theory are found in
nearly every introduction, e. g. [12].



3 Bayesian networks

Modeling with Bayesian Networks is equivalent with learn-
ing a probability distribution p(X1; X2; � � � ; Xn) which
represents the data as well as possible. Assuming indepen-
dencies between the variables, the joint distribution sim-
plifies to

p(x1; x2; � � � ; xn) = p(x1) �

nY
i=2

p(xijpa(i)): (6)

with pa(i) as the instantiation of Pa(Xi). This means that
the distribution of a node Xi depends only on its parents
Pa(Xi). There are several types of BNs, which can be dis-
tinguished by the type of nodes used. We restrict ourselves
to normally distributed, continuous nodes i. e. p(xjy) =
N (�X0

+WXy;�X) where Y = Pa(X) are the parent
nodes of X , �X0

is the mean when no parent exists or
all parent have zero values. W X is a weight matrix used
to characterize the influence of Y on X . �X is the co-
variance matrix of the normal distribution. The restriction
to normally distributed nodes enables us to use the infer-
ence algorithms described in [9], avoiding time consum-
ing sampling procedures. Additionally there is no need to
bother about convergence problems. This is important as a
controller has to react in real-time.

One of the most important operations on BNs is the
calculation of marginal distributions. Given a full distribu-
tion p(X) with X = fX1; � � � ; Xng an arbitrary distribu-
tion p(XnC) withC � X can be calculated by integration
over all variables in C:

p(XnC) =

Z
C

p(X)dC. (7)

A more detailed description of the algorithms used for
BNs is given in [9], for a more detailed introduction see
[10] or [6].

3.1 Dynamic Bayesian networks

For many purposes a static description is sufficient. But
there are a lot of applications when time is an important
factor, i. e. the distribution of a variable X(t) depends not
only on other variables, but also on its own value at a previ-
ous time step, e. g. systems described by equations 2 and 3.
For such cases dynamic Bayesian networks are developed,
which are able to monitor a set of variables at arbitrary, but
fixed points of time, i. e. a time discrete representation is
used.

For each modeled point of time a static Bayesian net-
work is used. These time slices are linked to represent the
state of a variable at different points in time. Regarding the

state space description of eq. 2 the state xt+1 depends on
the input ut and the state xt.

In a DBN the states are regarded as normally dis-
tributed, i. e. p(xt+1 j pa(xt+1)) = p(xt+1 j xt;ut) =
N (ABNxt +BBNut;�). For the evaluation a DBN can
be regarded as a static BN with equal parameter for all
time slices respectively between the time slices. A deeper
introduction is found in [8]. Well known DBNs are Hid-
den Markov Models and Kalman filter which are mostly
used in control theory for tracking and prediction of linear
dynamic systems.

3.2 Kalman filter

Our aim is to develop a controller which uses a DBN as
model to generate the control signals. As a first step the
model used for systems described by equations 2 and 3
will be developed. As a result we will get the structure, the
weight matrices and the mean values of a DBN. In section
4 this DBN is used to calculate the necessary input signals
via marginalization.

In control theory Kalman filters are a well known
method for tracking and prediction of stationary, linear
systems as described in section 2. Furthermore they are a
special case of DBNs, so the results obtained for Kalman
filter, e. g. in [5], may be used without any changes.

The state x(t) of a homogeneous systems, i. e.
u(t) = 0, is calculated as follows:

x(t) = x(t0)�(t; t0) (8)
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As DBNs represent a time discrete system � cannot be
used directly as weight matrix in a DBN. Time discrete
systems are described by difference equations

xk+1 = ABNxk +BBNuk (10)

that are solved by

ABN = �(tk+1; tk) (11)

BBNuk =

Z
tk+1

tk

�(tk+1; �)Bu(�)d� . (12)

If we restrict ourselves to systems with a constant
�T = tk+1 � tk and assuming that the input remains con-
stant during a timeslice, then �(tk+1; tk) = �(�T ) stays
constant for all k and equation 12 simplifies to

BBN = �T
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A
i
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i

(i+ 1)!
B. (13)



To build a DBN, which incorporates these equationsBBN

is used as weight matrix between the input nodes and the
state nodes. The matrix �(�T ) describes the transition
from one state to the next and is therefore used as weight
matrix for the inter slice connection between two states in
neighboring time slices. This means that the state at time
t+ 1 is calculated by

xt+1 = [�(�T ) BBN ] �

�
xt

ut

�
: (14)

In a BN the mean � is equal to � = �0 +Wy. Thus �0
has to be set to zero and W = [�(�T ) BBN ]. The out-
put depends linearly on the state and is not time dependent,
thus the matrix C and E may be used unchanged also in
a time discrete system. In figure 2 two time-slices of the
second order system used to model the example of section
2 are shown. Please note that the rectangles in this picture
do not represent any random variable, but the weight ma-
trices and how they are used to calculate the means of the
nodes, represented by circles.
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Fig. 2. Weight matrices in a Kalman filter

As a further consequence the dimension of the hidden
state nodes is equal to the order of the differential equation
describing the system.

4 Calculation of control signals

In section 3.2 we showed how to set the weight matrices
and mean values of the DBN, the questions about the time-
difference �T and the covariance matrices are still open.
We first introduce the structure and the generation of the
input signal before we deal with the remaining parameters.
For the generation of the input variable u a DBN with a
fixed number of time-slices as depicted in figure 3 is used.

To generate the manipulated valueu(t+1) the first part of
the input nodes is used to enter the history. In figure 3 these
are the nodesu(t�2) up to u(t), for our experiments 1 we
used 20 nodes for the representation of the past. Moreover
the observed output values are stored and entered as evi-
dence using the nodes q(t0), the oldest stored output value,
till q(t). The state cannot be observed, so no evidence is
given for the random variable x. Now it is the task of the
DBN to calculate a signal that can be used to change the
system’s output to the desired signal and to keep that out-
put constant. To instruct the system to do so the desired
value w is also entered as evidence. This means the de-
sired future values for the output nodes are treated as they
were already observed and entered as evidence for all the
nodes q(t + 1) till q(tmax). To control the plant it would
be best to calculate the signal which leads with a maxi-
mal probability to the new desired value. For reasons of
simplicity we used the marginal value of u(t + 1) instead
of calculating the value of u(t + 1) which leads with a
maximal probability to the given evidence. The new input
was passed to the simulation of the dynamic system and
the resulting output is calculated. Then a complete cycle is
finished. The used input and the resulting output are added
to the history and the next input is calculated. To ensure
that the calculation of the input signal is not limited to a
certain amount of time the evidence is shifted to the left
after each time step, i. e. the oldest input and output values
are thrown away. Then the current signal is entered at time
t. The future values may remain unchanged if the desired
value is not changed.

It remains the question, what �T is appropriate for
the dynamic system. According to control theory a system

Ku(t) = q(t) + T1
dq

dt
+ T

2

2

d
2
q

dt2
of second order has an

eigenfrequency of !0 = 1

T2
. The minimal sampling rate is

twice the frequency to be measured. Therefore the maxi-
mal value for �T should be

�Tmax =
T2

2
: (15)

Our first experiments are done with very low covari-
ances, because we used an accurate model based on an an-
alytical description and are not interested in loosing infor-
mation due to great covariances. Please note that zero co-
variances are not possible, due to matrix inversion during
evaluation. As a consequence we got an accurate model
that was unable to calculate appropriate control signals.
The reasons are that a low covariance at the input nodes,

1 The experiments were done with Matlab, the Control
toolbox to simulate the dynamic systems and the BN-
Toolbox, an expansion of Matlab which is freely available at
http://www.cs.berkeley.edu/�murphyk/Bayes/bnt.html
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Fig. 3. Principal structure of a BN used for control purposes

together with zero mean values results in a very low proba-
bility that u(t) 6= 0. Therefore we changed the covariance
of the input node to a maximum to tell the system, that
there is no a-priori information about the correct value of
the input signal. The other covariances remain unchanged
to keep the accurate modeling behavior. For a further im-
provement we used the EM algorithm (see [2], [13], [15]
or [14]) to learn the mean of the input nodes. We tested the
reference action of the control loop on systems with pro-
portional response with second order delay. This systems
are described by a differential equation of second order.

5 Experiments

Our system was tested with a Bayesian network with the
structure given in figure 3. The old input- and output sig-
nals together with the desired values are entered as evi-
dence. Then the marginal value for u(t+ 1) is calculated
and used as input for a system of second order that was
simulated by Control, a Matlab toolbox. These systems are
defined by the differential equations

Ku(t) = q(t) + T1
dq

dt
+ T

2

2

d
2
q

dt2
(16)

and their behavior depends mainly on the two parameters
T1 and T2. If the damping D = T1

2T2
is greater than one

the system has no tendency to overshoot which means that
these systems are easy to control. To test our controller
the desired value was changed from 0 to 20 and the sys-
tem’s response was regarded. The quality of the controller
depends on the time needed until the new output value is
reached, the deviation between the desired value and the
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Fig. 4. Signals of a strong damped second order system

actual value and on the overshoot. Figure 4 describes the
behavior of a system with K = 2, T1 = 1, T2 = 0:1 and
�T = 0:05. It gets clear that there is no overshoot, nearly
no deviation from the desired signal and the time until the
desired signal is reached is below one second.

If D < 1, the system has the tendency to overshoot
and to oscillate (cf. figure 5, with K = 2; T1 = T2 = 0:1
and �T = 0:05). Also in that case the output signal is
acceptable, but the input signal oscillates. Such a signal
cannot be used in practical situations. Therefore it is nec-
essary to damp down the input signal. This can be done
by not only using u(t+ 1) as input signal, but a weighted
sum of signals of past and predicted signals. Regarding the



0 0 . 5 1 1 . 5 2
−4 0

−3 0

−2 0

−1 0

0

1 0

2 0

3 0

4 0

5 0
S i g n a l s  o f  s e c o n d  o r d e r  s y s t e m  w i t h  D  =  0 . 5

T i m e [ s ]

D
e

s
ir

e
d

 v
a

lu
e

, 
In

−
 a

n
d

 O
u

tp
u

ts
ig

n
a

l

I n p u t s i g n a l  
O u t p u t s i g n a l   

D e s i r e d
V a l u e  

Fig. 5. Oscillating input

output signal resulting from the damped input at figure 6 it
gets clear, that this does not change the accuracy. Only the
time needed to take on the new desired value is increased.
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5.1 Systems of higher order

Theoretically it is possible to model a system of higher
order by using state nodes with the same dimension as
the system’s order. Experiments show that numerical prob-
lems occur when calculating the inverse of a potential’s co-

variance matrix2. As each clique in a junction-tree (see [9]
or [7]) contains the node itself and the node’s parents the
potential which contains the state nodes has at least twice
the dimension of the state node. To cope with that problem
a dynamic system of higher order can be split in several
controlled systems of second order being connected in se-
ries. Thus the dimension of the potentials is limited and
the matrix inversion is numerically stable.

6 Summary

Starting from an analytical description the structure of a
dynamic Bayesian network was developed and an explana-
tion was given how to calculate the parameters of a Bayesian
network. Using the desired value as evidence it was shown
that the marginal distribution of the input nodes may be
used as input signal for the controlled system. The result-
ing steady state desired value deviation disappears if the
mean of the input nodes is learnt, and a great dispersion is
used. There is nearly no literature about controllers based
on BNs, Welch [17] proves that BNs might be used in real
time for control purposes, but he is restricted to static BNs
and the choice between two possible actions.
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