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Abstract In this paper, we compare and evaluate five contemporarg;dtaten
real-time 2D object tracking methods: the region trackeHbger et al., the Hy-
perplane tracker, the CONDENSATION tracker, and the Meaift 8hd Trust
Region trackers. The first two are classical template basettiads, while the
latter three are from the more recently proposed class tddnsm based track-
ers. All trackers are evaluated for the task of pure traimsiatacking, as well as
tracking translation plus scaling. For the evaluation, se apublically available,
labeled data set consisting of surveillance videos of hsrapublic spaces. This
data set demonstrates occlusions, changes in object appeaand scaling.

1 Introduction

Data driven real-time 2D object tracking is a preliminary fioany different computer
vision tasks, like face and gesture recognition, surveistasks, or action recognition.
Recently, two promissing classes of 2D data driven trackieghods have been pro-
posed: template, or region based, tracking methods amuph#st based methods. The
idea of template based tracking is to track a moving objecltdfining a region of pixels
belonging to that object and using local optimization me#to estimate the transfor-
mation parameters of that region between two consecutiagés In histogram based
methods the idea is to represent an object by a distinctstedniam, for example a color
histogram. Tracking is then performed by searching for dlaimegion in the image
whose histogram best matches the object histgram from ttarfiage. In this paper,
we present a comparative evaluation of five different oljeatkers, two region based
[1,2] and three histogram based approaches [3-5]. We tegbélformance fo each
tracker both for pure translation and for translation withlgng. Due to the rotational
invariance of the histogram based methods, further motiodats, such as rotation
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Figurel. Example of template matching: The left image is the refezantage from which the
reference template was extracted. The region points arkethdy crosses. In the other two im-
ages, the reference region has been transformed (ceatgstation, right: translation and scaling)
to match with the reference template. The reference regiamarked by the dashed rectangle.

or general affine motion, are not considered. In the evalnative focus especially on
natural scenes with changing illuminations and partialusions basd on a publically
available data set [6].

The paper is structured as follows: in Section 2.1 we giveoatshtroduction to the
mathematics of both tracking principles. Section 3 dealk thie test set and evaluation
criteria that we use for our comparative study. The main rifouion consists of the
evaluation of the different tracking algorithms in Sectfimhe paper end with a short
conclusion and discussion of the results.

2 DataDriven 2D Object Tracking

In the following two sections, we summarize two differerasdes of data driven ob-
ject tracking in the image plane: template matching metlaashistogram matching
methods.

2.1 Template Matching

One type of algorithm for data driven object tracking is lthea template-matching.
During an initialization step, the intensity values areragted from image points be-
longing to the object. These points form treference region r = (x1, x2, ..., xN)7,
wherex; = (z;,y;) is a 2-D point. The gray-level intensity of a pointat timet is
given by f(x, t). Consequently, the vectdi(r, t) contains the intensities of the entire
regionr at timet and is called gemplate. The template at the starting timgis denoted

as thereference template. Template matching can now be described as computing the
motion parameterg(t) that minimize the least-square intensity difference betwthe
reference template and the current template:

p(t) = arglrlnin If (rto) = F (g (r, ), D)5 - @)

The functiong (v, i) performs a geometrical transformation of the the regioraipa
eterized by vectop. Several such transformations can be considered, e.gusRp
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parameterization which not only deals with translatiortation, and scaling, but also
with affine and projective transformations. In this papes,restrict ourselves to trans-
lation and scale estimation, as illustrated in Fig. 1

The minimization in Eq. 1 is computational expensive if ddnea brute-force
search. It is more efficient to approximatehrough a linear system

plt+1) = p(t) + At +1) (f (v, t0) — f (g (r,u(?) ,t+1)). )
We compare two approaches for computing ma#i¢) from Eq. 2. Jurie and Dhome
[2] perform a short training step, where random transfoiomatare simulated in the
reference image. Typically, on the order of 1000 transfdiona are executed and their
motion parameterg, and difference vectorg (r,t0) — f (g (v, ;) , to) collected.
Afterwards, matrixA is derived through a least squares approach. Notedhzdn be
made independent fromin this approach. For details, we refer to the original paper
A more analytical way is proposed by Hager et. al [1], who ud&sa order Taylor
approximation. During initialization, the gradients oétregion points used to build a
Jacobian matrix. Althougl cannot be made independent frenthe transformation
can be performed very efficient and the approach has realdapability.

2.2 Histogram Matching

In histogram based tracking methods, the target is agairtifael by an image region
r(p(t)), wherep(t) contains the time variant parameter of the region, alsonedeo
as the state of the region. One simple example for a regigi¢)) is a rectangle of
fixed dimensions. The state of the regjatt) = (m.(t), m,(t))7is the center of that
rectangle in pixel coordinates;,(t) andm,,(t), for each time step. With this simple
model, translation of a target region can be easily desgrilyeestimatingu(t), i.e.
center of gravity of the rectangle, over time. If the sizeh&f tegion is also included in
the state, estimation of the scale is possible.

The information contained within the region is used to mdtlelmoving object,
but instead of focusing on individual pixels and their valu@e distribution of features
defined at each pixel is used. The information may consistetblor, the intensity, or
certain other features like the gradient. At each time st@pd for each statg(t), the
representation of the moving object consists of a prolighi&nsity functiorp(u(t)) of
the chosen features within the regiefu.(¢)). In practice, this density function has to be
estimated from image data. For performance reasons, a teeigistograny (u(t)) =
(q1((t)), g2(px(t)), ..., qn(u(t)))T of N binsis used as a non-parametric estimation
of the true density. Each individial bip(p(¢)) of the histogram is computed by

G(p®) =Cuwy > Lpw@)db(u)—i),i=1,...,N (3)
ueT(p(t))

with L+ (u) being a suitable weighting functioh;(u) the function that maps the
pixel u to the number; of the bin which the feature at positiam falls into (j €
{1,...,N}), andé being the Kronecker-Delta function. The value

1
B Zuer(,u(t)) Ly ()

Cu (4)
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Figure2. Stills from three of the videos used. The solid box marks tredhlabled ground truth.
The dashed box is the tracker’s current estimate. In thd-rigist image, the tracker has been
distracted by a temporary occlusion from another persathsabsequently lost the real target.

is a normalizing constant. In other words, (3) counts allupances of pixels that fall
into bini, where the increment within the sum is weightedZQy;)(u).

Object tracking can now be defined as an optimization prob8tarting with an ini-
tial target region — for example, manually or automaticdiyined in the first image at
t = to — an initial histogramg(u(0)) can be computed. For> ¢, the corresponding
region is defined by

pn(t) = arg;ninD(q(u(O)), q(p(1))) (5)
with D(-,-) being a suitable distance function defined on histogramsutnvork we
compare two local optimization techniques, the Mean Shigfodthm [7, 8] and the
Trust Region algorithm [4, 9], as well as a global optimiaattechnique using particle
filters [5, 10].

3 Test Set and Evaluation Criteria

The experiments were performed on publically availablegglfrom the CAVIAR [6]
project. These are surveilance-type videos from a fixed cansbowing human beings
performing a variety of actions. The videos come with haadgeled ground truth in-
formation, which allows an independent evaluation of oackers. The ground truth
information describes rectangles surrounding the indi@ithumans in each scene.

Figure 2 shows sample images from three of the used videaschange in the
tracked person’s appearance, as well as the heterogenackigrbund, makes this a
relatively difficult problem.

In each experiment, a specific person was to be tracked. &bkitg system was
given the frame number of the first unoccluded appearendeeopérson, the ground
truth rectangle around the person, and the frame of the psrdissappearance. Each
tracker was initialized with this enclosing rectangle.desirom this initialization, the
trackers had no access to the ground truth information.

For each frame, two measurements between the tracked ragibihe ground truth
region were recorded. The first is defined as the fraction ofexerlapping area by the
total area of both regions:

_ A\ B[+ B\ 4]

er(A,B) := A+ (B] (6)
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Table 1. Timing results from the first sequence, in milliseconds. &arh tracker, the time taken
for initialization, and the average time per frame, are shéwy scaling and non-scaling versions.

Without scaling With scaling
initial|per frameinitial |per frame
Hager & Belhumeu 5 2.33 5 2.87
Hyperplang 528 2.16| 536 2.19

Mean Shift 2 1.03 2 2.74

Trust Region 9 401 18 8.63
CONDENSATION| 11| 79.71| 11| 109.95

whereA and B are image regions, represented as sets of image point$, amlthe
cardinal number of a set. Identical regions have a regiar efre,.(A, A) = 0, while
non-overlapping rectangles have a region errar.dthe second measurement, denoted
e, IS the Euclidean distance between both rectangles’ cgntezasured in pixels.

Twelve experiments were performed on seven videos (soneosidvere reused,
tracking a different person each time).

4 Experimental Results

The following five trackers were compared: The region traglkalgorithm of Hager et
al.[1], working on a three-level Gaussian image pyramiddrighy to enlarge the basin
of convergence. The Hyperplane tracker, using a 150 pogidmeand initialized with
1000 training perturbation steps. The Mean Shift and Tregfiéh algorithms, using an
Epanechnikov weighting kernel, the Bhattacharyya distaneasure and the HSV color
histogram feature from [5] for maximum comparability. Higghe CONDENSATION
based color histogram approach from Pérez et al.[5], with garticles diffused by a
zero-mean Gaussian distribution with a variance of 5 pikeleach dimension. All
trackers were tested with pure translation, and with tetitsl and scaling.

All tests were timed on a 2.8 GHz Intel Xeon processor. Théhout differ greatly
in the times taken for initialization (once per sequence) acking (once per frame).
Table 1 shows the timing results from the first sequence. Netaoints are the long
initialization phase of the Hyperplane tracker due to frajnand the long per-frame
time of the CONDENSATION tracker due to the large number ofiples.

The trackers’ output was compared to the ground truth wightwvo evaluation cri-
teria introduced in section 3 (distance between cenrtgand fraction of region overlap
e,). For each tracker, the errors from all sequences were temaid and sorted.

Figure 3 shows the measured distance eryand the region errax,. for all trackers,
both with and without scaling.

Performance varies widely between all tested trackersyisigostrengths and weak-
nesses for each individual method. There appears to be nwrthethich is universally
“better” than others.

The structure-based region trackers, Hager and Hyperpteepotentially very
accurate, as can be seen at the left-hand side of each graete they display a larger
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Figure3. The result graphs. The top row shows the distance eg;adhe bottom row shows the
region errore,-. The left-hand column contains the results for trackerfeuit scaling, the right-
hand column those with scaling. THe horizontal axis doisawtespond to time, but to sorted
aggregation. The vertical axis fer has been truncadet to 100 pixels to emphasize the relevant
details.

number of frames with low errors. However, both are pronesinlg the target quicker,
causing their errors to climb faster than the other threehoust. Particularly when
scaling is also estimated, the additional degree of freetypially provide additional
accuracy, but causes the estimation to diverge sooner.iFtii®@ consequence of the
strong changes of appearance of the tracked regions inithage sequences.

The CONDENSATION method, for the most part, is not as aceueat the two
local optimization methods, Mean Shift and Trust Region. Wegéieve this is partly
due to the fact that basic CONDENSATION does not provideaiffitame refinement,
and that time constraints necessitate the use of a quickipatable particle evaluation
function. However, the strength of the CONDENSATION apetokes in its robustness
against local optima: it is capable of reacquiring a lostr{early lost) target, which
shows in the flatness of the error curves towards the high end.

Figure 4 shows a direct comparison between a locally optigigtructural tracker
(Hager) and the globally optimizing histogram based CONBEBNION tracker. It is
clearly visible that the Hager tracker provides more adeuresults, but cannot reac-
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Figure4. Comparison of the Hager and CONDENSATION trackers usingetherror measure

(cf. Sec. 3). The black rectangle shows the ground truth.\ithige rectangle is from the Hager
tracker, the dashed rectangle from the CONDENSATION trackee top, middle and bottom
images are from frames, t2, andts respectively. The tracked person (almost) leaves the cam-
era’s field of view in the middle image, and returns near tlfieiteage. The Hager tracker is
more accurate, but loses the person irretrievably, wh#éeGDNDENSATION tracker is able to
reacquire the person.

quire a lost target. The CONDENSATION tracker, on the otheamdy can continue to
track the person after it reappears.

The Mean Shift and Trust Region trackers perform equallyl wetl provide the
overall best tracking when scaling is not estimated. Whairgg is introduced, how-
ever, the Mean Shift algorithm performs noticably betteantithe Trust Region ap-
proach. This is especially visible when comparing the negioore,. (figure 3, bottom
right), where the error in the scaling component plays aroirigmt role.

Another very interesting thing to note is that tracking slation and scaling, as
opposed to tracking translation only, generally dimt improve the results on these
sequences. In fact, the performance of all trackers de&ted, even when measuring
the fraction of region non-overlap (where any changes etagcale will automatically
penalize trackers which do not estimate scaling).

For the structure-based trackers, Hager and Hyperplaaghhnging appearance
of the tracked persons is a strong handicap. The extra deffee=dom opens up more
chances to diverge towards local optima, which causes thettt be lost sooner.

The trackers using histogram features, on the other haifféy $rom the fact that
the features themselves are typically rather invarianeusdaling. Once the scale, and
therefore the size of the region, is wrong, small transtetiof the target can go com-
pletely unnoticed.
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5 Conclusion

In this paper, we presented a comparative evaluation of fate sf the art algorithms
for data-driven object tracking, namely Hager’s regiorckiag technique [1], Jurie’s
Hyperplane approach [2], the probabilistic color histogr@acker by Perez [5], Co-
maniciu’s Mean Shift tracking approach [3], and the TrusgiBe method introduced
by Chen [11]. All of those trackers have the ability to estientie position and scale of
an object in the image in real-time. For the comparison, tA¢I&R video database,
which includes ground-truth data, has been employed. Tédtseof our experiments
show that, in cases of strong appearance change, the regged methods of [2, 1] tend
to lose the object more often than the histogram based metfudthe other side, if the
appearance change is weak, the region based methods stimpasiser approaches in
tracking accuracy. Comparing the the histogram based rdstamong each other, the
Mean Shift approach [3] leads to the best results. The exysris also show that the
probabilistic color histogram tracker [5] is not quite as@a@te as the other techniques,
but is more robust in case of occlusions and appearance ebang
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