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Abstract

In this paper we describe a new approach to contour ex-

traction and tracking, which is based on the principles

of active contour models and overcomes its shortcom-

ings. We formally introduce active rays, describe the

contour extraction as an energy minimization problem

and discuss what active contours and active rays have

in common.

The main di�erence is that for active rays a unique

ordering of the contour elements in the 2D image plane

is given, which cannot be found for active contours.

This is advantageous for predicting the contour ele-

ments' position and prevents crossings in the contour.

Furthermore, another advantage is that instead of an

energy minimization in the 2D image plane the mini-

mization is reduced to a 1D search problem. The ap-

proach also shows any{time behavior which is impor-

tant with respect to real{time applications. Finally, the

method allows for the management of multiple hypothe-

ses of the object's boundary. This is an important aspect

if concave contours shall be tracked.

Results on real image sequences (tracking a toy train

in a laboratory scene, tracking pedestrians in an outdoor

scene) show the suitability of this approach for real{time

object tracking in a closed loop between image acquisi-

tion and camera movement. The contour tracking can

be done within the image frame rate (25 fps) on stan-

dard Unix workstations (HP 735) without any special-

ized hardware.

1 Introduction

In the past years real{time object tracking in a closed

loop of image acquisition and camera movement has

become more and more important. Real{time ob-

ject tracking algorithms are applied to the area of au-

tonomous mobile systems [10], service and cleaning

robots and surveillance systems [3]. The typical en-

vironment of such systems consists of a dynamically

changing world due to motion and actions of objects

in the world and due to the movement of the system

itself. Thus, no o�ine processing of the image data

is possible. The results of a motion tracking module

must be available in time, to suitably react on events

in the world. One example are service robots, which

must track moving people in hospitals to avoid collisions

with them. The tracking algorithm provides informa-

tion about moving persons, which is used by another

module to decide, whether a person might be an obsta-

cle or not. If the moving object is on the movement path

of the service robot, the robot must avoid the collision.

Up to now, many di�erent algorithms have been de-

veloped to detect and track motion in image sequences

[13]. Some of the work was concentrated on o�ine

processing of prerecorded image sequences [12]. This

means, that no interaction in a closed loop of image ac-

quisition and camera movement is possible. Real{time

object tracking has been the goal of several researchers.

Some of them use a model based approach [8, 9] which

is dependent on a speci�c area of application, like car

tracking. The other class of algorithms uses correla-

tion or optical 
ow based approaches [17], which can be

applied without knowledge about the problem domain.

In the past realization of such algorithms made use of

specialized hardware, like pipelined imaging hardware

or transputer systems [8, 15]. For portability reasons it

would be advantageous, if such systems could be imple-

mented on general purpose hardware. A rule of thumb

says, that the hardware performance doubles every 18

months. Thus, no reimplementation on the faster hard-

ware is necessary. The software only needs to be recom-

piled and then runs twice as fast.

Some promising results in real{time tracking with-



out specialized hardware have been presented recently

[1]. One class of algorithm is the so called active con-

tour model (snake) [11]. What are the reasons, for the

suitability of active contours for object tracking with-

out specialized hardware? First, the image needs only

be processed in a small area around the snake elements,

which results in an enormous reduction of the processed

data. Second, active contour models need no distinc-

tion between foreground and background objects. The

active contour extracts the moving object's contour in-

dependently of other moving objects in the scene |

assuming that there are no occlusions. This is advan-

tageous if the camera is steered to follow the moving

object and thus motion is induced to the whole scene.

Finally, active contours can handle changes of the ob-

ject's contour due to the inherent deformation ability.

Thus, changing contours of the moving object due to

motion in the 3D world, which are based on a changing

view to the object, can be handled.

But active contours have also some disadvantages: No

ordering of the elements in the image plane is given, it is

hard to implement an any{time behavior, crossings can

occur in the contour, and the contour normally shrinks

in the case of missing external energies. These disadvan-

tages will be discussed in more detail in section 2. They

have been the motivation of our work. Starting from the

advantages of active contours, we modify the contour

representation. We use a reference point within the ob-

ject's contour and shoot rays in di�erent directions from

this reference point m (see Figure 1). On these rays,

we look for contour point candidates. This reduces the

contour point localization from a 2D to a 1D search on

each ray. The coupling of the rays in di�erent direction

is done similary to active contours. We introduce an en-

ergy term, which describes the internal elasticity of the

rays. Now we have an active ray following the naming

of active contours. The contour extraction can then be

described as an energy minimization problem. We show

in the following, that all optimization problems are re-

duced to 1D search problems, and that no crossings can

occur because a unique ordering of the contour points

in the image plane is given. This is important, if the lo-

cations of the contour points shall be estimated during

a prediction step. Finally, the contour extraction shows

any{time behavior. This means, that after an initial-

ization step, the iterative algorithm for extracting the

contour of the moving object provides a contour repre-

sentations after each iteration step. The accuracy of the

contour representations grows with each iteration step.

Thus, the iterative procedure can be stopped at any

time, depending on the available computation time or

the required accuracy of the contour extraction. This is

a important aspect for a real{time system, because the

so called in{time constraint can be satis�ed. The ex-

perimental part will prove, that the contour extraction

is robust and can be done within the image frame rate

without any specialized hardware. The contour extrac-

tion time varies between 9 msec and 38 msec depending

on the chosen accuracy. We will prove the robustness

of this new approach for laboratory scenes (tracking a

moving toy train) and outdoor scenes (tracking moving

pedestrians).

contour C

m

cm(5=4�)

cm(�=2)

Figure 1: Representation of a contour by active rays

The paper is structured as follows. Section 2 �rst

summarizes the theory of active contours. This theory

is used as a motivation to introduce the new method

of active rays. We present an energy description, for-

mulate the contour extracting as a energy minimization

problem and present an any{time realization of the con-

tour extraction process. In section 3 we go into detail

for the formal description of active rays. We formally

derive an energy term, starting with the energy descrip-

tion of active contours. With this, we can show, that

active rays have the same behavior as active contours.

We then simplify the energy term, to avoid the shrinking

behavior which can be observed for active contours. In

section 4 we present results for the proposed algorithm

which show that tracking can be done in real{time on

standard Unix workstations without specialized hard-

ware. Section 5 summarizes and discusses the results of

this paper.
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2 From Active Contours to Ac-

tive Rays

2.1 A Short Remark on Active Con-

tours

Active contours have been widely used in computer vi-

sion in the past eight years, especially in contour seg-

mentation and tracking [16, 2, 14, 4]. An active contour

is a parametric function

c(s) = (x(s); y(s))T 2 IR2
; s 2 [0; 1] (1)

de�ned in the (x; y) image plane of an image f(x; y).

For closed contours one gets c(0) = c(1). Each snake

element c(s) has an energy E(c(s))

E(c(s)) = Ei(c(s)) +Ee(c(s)); (2)

with

Ei(c(s)) =
1

2

 
�(s)

���� @@sc(s)
����
2

+ �(s)

���� @2@s2
c(s)

����
2
!

(3)

being the internal energy, and

Ee(c(s)) = � jG�rf(c(s))j
2
: (4)

being the external or image energy, smoothed with a

Gaussian �lter G� with variance �. The active contour

has a total energy E

E =

1Z
0

E(c(s))ds =

1Z
0

fEi(c(s)) +Ee(c(s))g ds: (5)

During the contour extraction one looks for a paramet-

ric function c(s) which minimizes (5). This is mostly

done in the literature by solving the Euler{Lagrange

di�erential equations [11], by the dynamic programming

[16], or by the Greedy{Algorithm [18].

In practical applications several problems occur.

First, during the energy minimization crossings in the

contour may occur [19]. This is shown in Figure 2.

These crossings are a serious problem, if features com-

puted from the contour (for example, the center of grav-

ity) are used to track the contour. Of course, such

crossings can be detected, but only at the expense of

computation time. Second, the snake elements might

move around the contour, because they are not �xed at

geometric features of the object (see Figure 2). This is

a problem for a prediction step, which tries to estimate

the motion of the contour in the 2D image plane. If

the snake elements move around the contour, a wrong

motion will be estimated. Another problem which has

often been mentioned is the tendency of the contour to

shrink, in the case of missing external forces [18]. This

might happen, if parts of the object's contour are weak.

As a result the object is lost. Finally, it is hard to im-

plement an any time behavior which would be of great

advantage for a real{time application.

The reasons for the crossings in the contour and the

movement of the elements around the contour can be

understood by looking at the ordering of the active con-

tour elements in the images plane. Due to the de�ni-

tion as a parametric function in IR2, a unique ordering

is only given along the contour but not in the image

plane. Thus, if we can force an ordering in the image

Crossing

Figure 2: Two main problems of active contours dur-

ing tracking resulting from the missing ordering in the

2D image plane: Crossings in the 2D contour may oc-

cur (top). The snake elements are not �xed at logical

features on the object's contour, but they may move

around the contour as they like (bottom).

plane, these two problems can be �xed.

2.2 Active Rays: Energy Description

In the last section the missing ordering in the image

plane has been worked out as one reason for some of

the problems with active contours. This mean, that we

have to introduce a unique ordering in the image plane.

For this, we de�ne a reference point m = (xm; ym)
T ,

which has to lie within the image contour. An active

3



ray %m(�; �) is de�ned on the image plane (x; y) as a

1D function depending on those gray values f(x; y) of

the image, which are on a straight line from the image

point m in direction �

%m(�; �) = f(xm + � cos(�); ym + � sin(�)); (6)

with 0 � � � n�; where n� is given by the image size. In

the following we only look at convex contours. Concave

contours will be mentioned later. Now, we can identify

m

cm(�)

�

�m(�; �)

contour C

Figure 3: Representation of a contour point by active

rays

a point of the contour by the parameter ��(�) � 0

�
�(�) = argmin

�

 
�

���� @@�%m(�; �)

����
2
!
; (7)

with 0 � � < 2�: The step, which lead to (7), is moti-

vated by the assumption, that an edge in 2D can also

be found by a gradient search in the corresponding 1D

signal. Of course, edges which are in the direction �

from the reference point cannot be found on the ray

%m(�; �). The experiments in section 4 will show, that

this case is not relevant in pratice. Having the optimal

value for ��(�) the contour point cm(�) in the image

plane can easily be computed by

cm(�) = (xm + �
�(�) cos(�); ym + �

�(�) sin(�)); (8)

with 0 � � < 2�: What are the results of this new

representation up to now?

1. The ordering in the image plane is given by the an-

gle �, i.e. we always know where the contour point

can be found, which corresponds to the direction

�n. For this we only have to look from the refer-

ence point in direction �n. Thus, no crossings can

occur in the contour.

2. Using (8) we get the same representation of the

contour as for active contour, namely the represen-

tation of the contour by the border of the contour.

3. The most important aspect, especially for real{

time applications, is the reduction of the contour

point search from the 2D image plane to a 1D sig-

nal. This reduces the computation time, which will

be shown in the experimental part of this paper.

Summarizing the approach, we shoot from one given

reference point in di�erent directions � rays, on which

a contour point candidate is searched for. In Figure 4

the extracted contour of an object and in Figure 5 the

function �
�(�) are shown. One can observe, that the

function �
�(�) is smooth for the angles which corre-

sponds to the correctly extracted contour (0 � 4=3�).

Then, an error can be seen, both in the extracted con-

tour and in the function �
�(�). For � 2 [4=3�; 3=2� [

the function is not smooth, because a wrong contour

part has been extracted. This is no surprise. Looking

at equation (7) one can see, that up to now, the con-

tour points are calculated without taking into account

neighboring contour elements. Thus, we need to intro-

duce some linkage between neighboring contour points

to take into consideration that normally contours are

coherent in space, i.e. that contours are smooth. A

usual approach to connect neighboring contour points

together is to introduce an internal energy similar to

the active contour approach.

Figure 4: 2D contour extracted by active rays

An internal energy which handles the above men-

tioned demands is

Ei(cm(�)) :=
�(�)j d

d�
�(�)j

2
+ �(�)j d

2

d�2
�(�)j

2

2
: (9)

In the next section we will show how this energy can

be derived. One important aspect of this internal en-

ergy term is, that this energy also depends only on a
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Figure 5: 1D function �
� of the corresponding 2D con-

tour of Figure 4.

1D function, in contrast to active contours, where the

internal energy depends on a 2D function. This results

again in a reduction of the complexity of the following

optimization algorithms.

Now we have an energy, which describes contour point

candidates for each ray and an energy, which connects

the rays to get a smooth contour. Similar to active

contours we de�ne a total energy E

E =

2�Z
0

[Ei(�(�)) +Ee(�(�))] d�: (10)

The contour extraction can then be described as an en-

ergy minimization problem. Using the variational ap-

proach the Euler{Lagrange di�erential equation

�(�)
d
2

d�2
�(�) � �(�)

d
4

d�4
�(�) +

d

d�

���� dd�%m(�; �)

����
2

= 0

must be solved. Again, this di�erential equation de-

pends on a 1D function, in contrast to the same di�er-

ential equation for active contours.

Before we stress the management of multiple hy-

potheses of contour points on one ray, some remarks

must be done regarding the reference point m. As al-

ready mentioned, this point must lie inside the object

contour, but the position may be arbitrary. For a pre-

diction step, a unique position would be of great advan-

tage. Thus, we always choose the center of gravity of

the contour

m = 1=2�

Z 2�

0

cm(�) d� (11)

for the reference point. If this equation does not hold

for an actual reference point and an extracted contour,

INIT:

delta = 2�, shootRay(0), shootRay(�)

ITERATE:

delta = delta/2, angle = 0

WHILE angle less than 2�

shootRay(angle+delta/2)

angle=angle+delta

Figure 6: Any{time algorithm for contour extraction

we update the reference point using equation (11), and

restart the contour extraction with the updated refer-

ence point's position.

2.3 Discretization: Any{Time Behavior

Up to now we have derived the theory of active rays

for the continuous case. By applying active rays for

contour extraction in images we have to go to the dis-

crete case. Two approaches for the discretization are

possible: �xed sampling rate 4� for the angle � or the

already mentioned any{time behavior. The later one

will be discussed in the following.

The representation of active rays allows for an dy-

namically increasing representation accuracy of the con-

tour. After an initialization step for each iteration we

can get a more accurate contour. But we alsomight stop

because after the initialization step we already have a

representation of the contour. This representation in-

creases in accuracy for each iteration. If there is only a

small amount of time, for example for fast moving ob-

jects or the synchronously tracking of several objects,

we can stop the iterative procedure after a few itera-

tion steps. If there is more time we can increase the

iteration steps and get a more accurate contour rep-

resentation. Finally, this procedure might be steered

by the distance of the contour elements to neighboring

contour elements. If the distance between neighboring

contour elements corresponding to �n and �n+1 is large,

then is would be useful to add one extra ray between

the angles �n and �n+1 to get a better approximation

of the contour between the angles �n and �n+1. The

algorithm is summerized in Figure 6.

In the experiments, a sampling step size4� = 2�=15

and 4� = �=5 have been prooven to be the best val-

ues for a wide range of di�erent objects. Increasing4�

results in a less accurate contour, while decreasing 4�

increases the computation time. A systematic evalua-

tion of di�erent4� has been done in [5] for a laboratory

scene, based on the di�erence of the true center of grav-

ity of the moving object and the center of gravity of the

5



�(�n+1)

m

�(�n)

�(�n+2)
contour part

Figure 7: The principle of multiple hypotheses on one

ray

extracted contour as well as based on the quality of the

complete system (see Section 4.1).

2.4 Extraction of Concave Contours

For extracting concave contours more than one contour

point might be found on one ray. Then, multiple hy-

potheses of the contour points should be handled. This

cannot be done for active contours, but can be done for

active rays as shown in the following.

We use in the following the abbreviation H for

H =

 
�

���� @@�%m(�; �)

����
2
!
: (12)

Then, instead of calculating only one contour point can-

didate for each ray, we can de�ne for each ray in direc-

tion � a set �(�)

�(�) =

(
�k(�)

����k(�) = argmin
�;� 6=�l;l<k

H; 0 � k < i

)
(13)

of i possible solutions for the contour instead of one sin-

gle contour element. Now, multiple boundary elements

lying on one ray can be handled. This is clari�ed in

Figure 7. Now, we have to modify the internal energy

of an active ray, because the energy of one ray depends

on the hypotheses on this ray and the neighboring rays.

What is a good, that means minimal energy, for an ac-

tive rays with several hypotheses? Instead of having for

one contour point a smooth curvature, each hypotheses

of this rays should have a corresponding contour point

on the neighboring rays. An energy terms which takes

this into account is in the discrete

Ei1 (�(�n)) =
X

�j2�(�n)

min
�k2�(�n+1)

(�j � �k)
2 (14)

Additionally, large distances between hypotheses on one

rays should be preferred. This can be handled by

Ei2 (�(�n)) = �
X

�j2�(�n)

X
�k2�(�n)

(�j � �k)
2
; (15)

which must me minimized to get large distances be-

tween the hypotheses. Now, we get the new term

Ei(�(�n)) = Ei1 (�(�n)) +Ei2(�(�n)) (16)

for the internal energy of an active rays with several

hypotheses on each ray. Of course, Ei1 and Ei2 can be

weighted di�erently. For the external energy we de�ne

Ee(�(�n)) =
X

�j2�(�n)

 
�

���� @@�%m(�n; �j)

����
2
!

(17)

It is worth noting, that the energy term (14) corre-

sponds only to the �rst order internal energy of (9).

As already mentioned, in the literature there exist

several solutions for the energy minimization problem

presented in the previous section. Besides the solu-

tion of the Euler{Lagrange di�erential equation, the

dynamic programming treads the optimization as a dis-

crete search problem. Because of the discrete formu-

lation of the multiple hypotheses energies the dynamic

programming is better suited for minimizing sum of (16)

and (17).

3 Formal Description

In this section we formally derive the internal energy

term of the active rays, which has already used in the

section 2.2. We can then also explain the tendency of

the snakes to shrink and will �x this problem by modi-

fying the internal energy of active contours.

It can be easily seen that the same contour can be

represented both with active contours and active rays.

Without any loss of generality we assume that the ac-

tive contour element c(0) corresponds to the active ray

element cm(0). Then the relation

c(s) = cm(�); (18)

is valid, with the variable substitution � = 2�s.

In the previous section we have looked for an en-

ergy term describing some kind of smoothness of a con-

tour. The internal energy of an active contour has been

proven to be a good energy description. Thus, we will

take exactly this energy term, but substituting the con-

tour representation of snakes by this of active rays. We

then get for the internal energy,

Ei(cm(�)) =
�(�)j d

d�
cm(�)j

2
+ �(�)j d

2

d�2
cm(�)j

2

2
:(19)
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Now substituting (8) in (19) we get�
1

2�

�
@

@s
cm(2�s) =

@

@�
cm(�) =

=

�
�
0(�) cos(�) � �(�) sin(�)

�
0(�) sin(�) � �(�) cos(�)

�
(20)

with �
0(�) = @

@�
�(�). Similary, we get

�
1

2�

�2
@
2

@s
2
cm(2�s) =

@
2

@�
2
cm(�)

=

�
�
00(�) cos(�) � 2�0(�) sin(�)� �(�) cos(�)

�
00(�) sin(�)� 2�0(�) cos(�) � �(�) sin(�)

�
(21)

with �
00(�) = @2

@�2
�(�). Now one can directly compute

�
1

2�

�2 ���� @@�cm(�)

����
2

=

=
h

(�(�))
2| {z }

distance term

+ (�0(�))
2| {z }

smoothing term

i
(22)

and �
1

2�

�4 ���� @2
@�

2
cm(�)

����
2

=

= 4 (�0(�))
2
+ (�00(�))

2| {z }
smoothing term

� 2�00(�)�(�)| {z }
mixed

term

+ (�(�))
2| {z }

distance

term

(23)

and we get for the internal energy Ei(cm(�)) of the

active ray

Ei(cm(�)) =
1

2

n
�(�)(2�)2

h
(�(�))

2
+ (�0(�))

2
i
+

+ �(�)(2�)4
h
4 (�0(�))

2
+ (24)

+ (�00(�))
2
� 2�00(�)�(�) + (�(�))

2
io

One can see two distance terms in this energy term.

Thus, during an energy minimization small distances to

the reference point are preferred. This is exactly the

behavior of active contours, which shrink to one point

in the case of missing external energy. This is not easy

to see by the energy description for active contours. In

contrast to this, the energy description of active rays

makes this behavior obvious. Using exactly the energy

term (25) active rays will show the same abilities as ac-

tive contours, with the exception, that all 2D optimiza-

tion steps are reduced to 1D. We have already noted,

that the shrinking behavior of active contours is not

advantageous. Thus, if we neglect the distance term in

the internal energy we �x this problem. Additionally it

can be shown, that the mixed term does not in
uence

the solution of the Euler{Lagrange di�erential equation.

So, this term can also neglected. As a result one gets

the term for the internal energy, as already proposed in

equation (9).

4 Experiments and Results

4.1 Experimental Environment

We have chosen two di�erent experimental environ-

ments to show the applicability of active rays: pedes-

trian tracking and tracking a toy train in a laboratory

scene. For the tracking of pedestrians and the toy train,

a pan/tilt camera devices looks at the scene.

The system for object tracking runs in two stages: an

initialization stage, where the motion detection module

detects motion in the scene, and a tracking stage. Mo-

tion detection is done assuming a static camera and

computing the di�erence image between consecutive

frames at a 128 � 128 image resolution. After thresh-

olding and smoothing operations (morphological opera-

tors \opening" and \closing") we get binary regions, in

which changes in gray values occurred. These changes

are assumed to be caused by moving objects. The center

of the largest binary region is taken as initialization of

the reference point of the active rays. If we observe too

many small regions or one very large region, the thresh-

old for computation of the binary image has been set

wrong regarding the noise conditions. Thus, we reject

the result, increase or decrease the threshold and start

the motion detection again. As a result, the threshold

is automatically adjusted to the noise conditions in the

scene.

After selection of one region and the corresponding

center of gravity (taken as initial reference point m,

compare Section 2.2) the contour extraction starts. As

a result we get the new reference point, which is the

center of gravitym of the moving object's contour. This

positional information is used by a camera control unit,

to steer the camera. This is done by a proportional

controller to keep the center of the object's contour in

the middle of the image. This closes the loop between

image acquisition and camera control.

During tracking an attention modules watches over

the whole process. This modules computes features

for the extracted contour, for example the x{ and y{

moment of the contour. Based on rapid changes of

the features errors are in the contour extraction and

7



tracking are detected. In this case, the attention mod-

ule stops the pan/tilt camera, and switches the system

back from the tracking stage to the initialization stage.

Then, the detection of moving objects starts again.

Due to lack of space, only a short overview of the

system could be presented. A more detailed descrip-

tion of this real{time system for tracking moving ob-

jects | though using active contours for tracking |

can be found in [6]. Experiments, where the camera is

mounted on a moving car, can be found in [7].

All algorithms are implemented on Unix{Worksta-

tions (SGI Onyx, 2 � R10000) in an object oriented

programming language. The frame grabbing is done

by a SIRIUS video board, which does no preprocessing.

The complete system also runs on a HP (735/99) but

with reduced speed due to the moderate frame grabbing

rate of an HP RasterOps frame grabber.

4.2 Tracking with Active Rays: Results

Experiments for extracting and tracking a contour with

active rays have been conducted. No prediction step has

been applied yet. This will be done in our future work.

Some ideas together with more experiments (tracking

of cars) can be found in [5].

In Figure 8 { 10 three di�erent image sequences taken

during a real{time experiment can be seen. In Figure 8

Figure 8: Sequence 1: Tracking a pedestrian with active

rays. (images 4, 24, 44, 64, 84, 104 of a sequence taken

during a real{time experiment). The sampling step size

4� is 2�=15.

a moving person is correctly tracked, although the con-

trast to the background is low. A worse result can be

seen in Figure 9. A person approaching the camera

is correctly tracked, until the contrast is very low and

Figure 9: Sequence 2: Tracking a pedestrian approach-

ing the camera (images 19, 29, 39, 49, 59, 69 of a se-

quence taken during a real{time experiment). The sam-

pling step size 4� is 2�=15.

another minimum in the energy corresponding to the

background object (the stick) is reached. Then, the ob-

ject is lost. This is a problem of a data driven approach

without prediction. To improve the approach we will

add a prediction step in our future work. Another good

result can be seen in Figure 10. One can also see, that

the extracted contour is very accurate. As soon as the

pedestrians moves into the sunshine the active ray is

attracted by the strong edges between sun and shadow,

and the object is lost.

To judge the results for pedestrians tracking under

di�erent weather conditions, we have recorded the cam-

era signal during the experiments on a video tape. This

video tape has been evaluated by visual inspection, to

measure the amount of time, where tracking works well

or errors occur. Results are shortly summarized in Ta-

ble 1. This shows the robustness of the contour based

approach regarding noise. The rates for correct mo-

tion detection are less accurate due to noise sensitivity

of the di�erence image motion detection algorithm. As

already mentioned the approach is sensitive to weak ob-

ject contours.

In Table 2 the computation time on a HP (735/99)

for di�erent sampling step sizes 4� can be seen. Even

for a very dense sampling (4� = �=180) the contour

extraction can be done within the image frame rate.

Finally, Figure 11 shows some results for the labo-

ratory scene. During a 30 minute experiment, which

corresponds to 45000 images, the moving toy train has

been tracked without any error, even during occlusions.
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Figure 10: Sequence 3: Tracking a pedestrian approach-

ing the camera (images 1, 21, 41, 71, 101, 131 of a

sequence taken during a real{time experiment). The

sampling step size 4� is 2�=15.

weather total

time

#

per-

sons

time

of

track-

ing

# tracked

persons

(time)

snow 120 226 21 101 (11)

cloudy 90 128 14 93 (11)

sunshine 90 152 13 102 (12)

total 300 506 48 296 (34)

Table 1: Results for pedestrian tracking under di�erent

weather conditions (success rate: 70 %). The time is

given in minutes.

The train moves at a speed of 40 cm/sec at a distance

of 1.5 to 2.5 m to the camera. This corresponds to a

displacement between consecutive images of 6{8 pixels

at a resolution of 128 � 128 pixels. The same exper-

imental environment has been taken for tracking with

active contours. This shows the improvements by the

new approach. Results can be seen in Figure 12. In this

case, the maximum speed of the toy train for compara-

ble tracking results has been 2.4 cm/sec, which prooves

the expected reduction of computation time for active

rays.

For more detailed evaluations of the real{time track-

ing system, in which the approach of active rays is in-

cluded, we have to refer to [5] for the laboratory scene

as well as for the natural one.

4� time/image

(msec)

�=180 38

�=36 19

�=18 12

�=9 9

Table 2: Computation time for one image for di�erent

sampling step sizes 4�.

Figure 11: Sequence 4: Laboratory scene with partial

occlusions and random changes of direction and speed

of the toy train during tracking. Every 5th image of a

sequence taken during a real{time experiment is shown.

The sampling step size 4� is �=5.
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5 Conclusion and Future Work

In our contribution we have presented a new approach

to contour tracking, called active rays. The basic ideas

come from active contours, which have been proven to

be a promising approach to data driven real{time con-

tour tracking.

Active rays have the following advantages over active

contour models:

� For active rays an ordering in the image plane is

given by a reference pointm and an angle �. Thus

no crossings occur and predicting the position of

the contour elements is possible.

� All optimization problems are reduced to 1D search

problems.

� Active rays provide a mechanism to select the

required accuracy of the contour approximation.

This leads to an any{time behavior, which is an

important aspect of real{time applications.

� Active rays provide a mechanism to manage mul-

tiple hypotheses. An energy term has been pre-

sented, which allows for the extraction of concave

contour parts within a energy minimization frame-

work.

Figure 12: Sequence 5: Results for tracking the toy train

with active contours (20 contour points). The maxi-

mum speed, where robust tracking can be performed,

has been 2.4 cm/sec.

We have presented a formal description of active rays

and an energy formulation for the contour extraction.

In addition we have shown the common parts of ac-

tive contours and active rays. Using the dynamic pro-

gramming for the energy minimization, the extraction

of concave contours is possible. The experiments have

proven that this new approach is well suited for an accu-

rate contour extraction and tracking in real{time. For

this no specialized hardware is necessary. The infor-

mation of the tracking algorithm, can be used as input

for another module, for example navigation or obstacle

avoidance.

We have focussed on a real{time application in a

closed loop between image acquisition and reaction |

in our contribution the pan/tilt movement of a camera.

The approach of active rays as well as active contours

(see for example [7]) can also be applied to multiple ob-

ject tracking by using one reference point for each ob-

ject. In this case either the camera movement and the

selection of the moving objects need to be optimized

to synchronously track multiple, or the camera needs

be static during tracking, too. Both problems are very

interesting and will be investigated in our future work.

In our future work we will focus on a second order en-

ergy term for multiple contour points on one ray. Addi-

tionally, we have �rst results for texture based energies

on 1D signals instead of the gradient in (7). Then also

textured object can be tracked. The combination of ac-

tive rays with a prediction step should also improve the

tracking results.
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