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ABSTRACT

We present a new approach for egomotion computa-

tion and the detection of independent motion in the

scene. In contrast to related work we apply statistical

methods which are based on the normal optical ow

�eld. We extract features for supervised and unsuper-

vised training from the normal optical ow �eld in or-

der to train a Gaussian{distribution classi�er (GDC)

and a Kohonen feature map. Finally, in a test phase

the egomotion computation is done by classifying fea-

tures extracted from the normal optical ow �eld into

the unknown motion direction. For the detection of

independent motion, the scene is divided into regions.

For each region a decision is made, whether the normal

ow in this region is based on the camera motion or

an independently moving object. We present results

of this approach which show a recognition rate of up

to 97% for the egomotion classi�cation and a detection

rate of moving objects of up to 87%.

1. MOTIVATION

Applications of state of the art image analysis can be

found in autonomous ground vehicles, robotics, indus-

trial production, etc. Since the camera is itself a mov-

ing part in many of these systems, estimation of the

viewer's motion is as important as the detection of in-

dependently moving objects in the scene. [1, 2, 8]

Similar problems have to be solved in active vision

systems where | in addition to various changes of the

camera parameters | the camera is moved purposively

in order to solve the vision tasks more e�ciently.
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We have to know the egomotion in order to detect

independently moving objects in the scene, and con-

versely, we also have to know about moving objects

in order to estimate the egomotion. A solution to this

chicken{egg problem is to compute global features from

the motion �eld [4].

In this contribution we present a new approach,

which extends global feature detection by statistical

classi�cation in order to detect independently moving

objects and to estimate camera motion. Additionally,

a Kohonen feature map [6] is trained which allows for

an unsupervised clustering of the features into di�erent

motion classes.

2. THEORETICAL BACKGROUND

In [4] an approach for the calculation of egomotion has

been proposed. It could be shown, that for every ego-

motion, described by the rotation (�; �; ) and trans-

lation (u; v; w), there exists a certain motion pattern

(cf. Fig. 1, left) in the image plane calculated from the

normal ow, i.e. the optical ow projected on the image

gradient between two images. The unknown motion

parameter of rotation (�; �; ) and the focus of expan-

sion (x0; y0) = (uf
w
;
vf

w
) are estimated by a search in the

motion parameter space (�; �; ; u; v; w) to match the

signi�cant motion patterns with the observed motion

�eld in the image. More details of this global feature

extraction scheme can be found in [4, 5].

This method of motion analysis is based on an com-

putationally expensive exhaustive search for the motion

parameters by separating the translation from the ro-

tation, and �tting the so called coaxis patterns; coaxis

vectors are de�ned as normal ow vectors perpendic-

ular to conic sections with the image plane; the conic

sections are de�ned by the egomotion of the observer.



(a=c; b=c)

Fig. 1: Left: Motion pattern. Right: example of posi-

tive coaxis vectors (from [4])

The comparison of the direction of the normal ow vec-

tors and the vectors perpendicular on the conic sections

de�nes the sign of a coaxis vector which will be used in

the following. Details on these de�nitions can be found

in [4]. Examples are shown in 1 and Fig. 2.

In case of wide spread vectors, i.e. a sparse normal

ow �eld due to lack of structure in the scene, there

exists no unique solution for the motion parameters

given a coaxis pattern. Also, for separating the rotation

from the translation, the camera needs a very large �eld

of view.

In this contribution we apply clustering techniques

(Kohonen feature maps) and statistical decisions (Gaus-

sian{distribution classi�er, GDC) in order to avoid such

global search techniques.

3. CLASSIFICATION OF MOTION FIELDS

By visually inspecting the motion pattern in Fig. 1 left

one can observe three homogeneous regions, one with

positive and one with negative coaxis vectors and one

region, in which both types of coaxis vectors may occur.

This depends on the structure and depth in the scene.

The idea of our approach is the following:

1. We calculate the normal ow. Since this can only

be done on edges in the image, we normally get

a sparse normal ow �eld.

2. Then, we compute the sign of the coaxis vectors

(cf. Sect. 2, [5]).

3. Finally, we search for areas in the image which

contain positive coaxis vectors, and for those which

contain negative vectors.

The area of the positive coaxis vectors will overlap with

the area of the negative coaxis vectors. The remain-

ing two areas, one with positive and one with negative

coaxis vectors only, will de�ne the egomotion of the

observer.

Now statistical methods are applied to estimate the

egomotion. One can calculate various features from the

areas. One example is the mean and the variance of the

position of coaxis vectors. We applied this procedure

to the (1; 0; 0)-, (0; 1; 0)- and (0; 0; 1)-coaxis vectors (see

[5]) and �nally got a 24{dimensional feature vector.

This vector was concatenated with a class label for the

direction of movement that caused the movement vec-

tors. Sets of these labeled feature vectors are now used

for training and testing a GDC.

Kohonen feature maps are well known for their abil-

ity to map similar features into neighboring areas in

the feature map (topology preserving maps [7]). Thus,

a second approach trains Kohonen feature maps to

cluster unlabeled feature vectors into di�erent areas.

Each area corresponds to a certain motion direction

(see Fig. 3). This is motivated by the observation, that

similar movements result in similar normal ow pat-

terns (i.e. features).

On the other hand, this approach can be used to de-

tect independently moving objects. Knowing the ego-

motion of the observer, one can look for outliers in the

coaxis vector �elds. For this the image is divided into

equal sized quadratic areas, which are searched for such

outliers. A signi�cant amount of outliers in one area in-

dicates an independently moving object. For example,

one can inspect the (0; 1; 0){coaxis vectors if a counter-

clockwise rotation around the x{axis is done. Then all

the (0; 1; 0){coaxis vectors in the whole image should

be positive. If some areas with negative coaxis vec-

tors can be observed, this is a hint to an independently

moving object.

Fig. 2: Examples for

positive and negative

(0,0,1){coaxis vectors

for a real scene.
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Fig. 3: Best Kohonen

feature map: the ar-

eas, which correspond

to certain motion di-

rections are shown.

4. EXPERIMENTS

We made experiments both for classi�cation of the ego-

motion and for the detection of independently moving

objects. For the classi�cation of the egomotion eight



class correct correct

(pan,tilt) GDC Kohonen

(-1,-1) 98% 83%

(-1, 0) 91% 92%

(-1, 1) 96% 93%

( 0,-1) 90% 63%

( 0, 1) 85% 45%

( 1,-1) 98% 87%

( 1, 0) 93% 98%

( 1, 1) 92% 83%

Tab. 1: Evaluation of correct classi�cation according

to various motion directions (motion of 2 { 6 pix-

els/image): results for the Gaussian{distribution clas-

si�er (GDC) and the Kohonen feature map (Kohonen).

classes for the eight possible motion directions of a pan{

tilt camera unit have been chosen. This allows for a

qualitative classi�cation of the motion directions

(pan,tilt) = f(1; 0); (0; 1); (�1; 0); (0;�1);

(1; 1); (�1;�1); (�1; 1); (1;�1)g:

A +1 means a counterclockwise rotation, -1 a clockwise

rotation of the axis.

In Tab. 1, second column, classi�cation results for

1000 test patterns of the various motion directions are

shown. For most of the classes the recognition rates

are over 90% for the GDC, which has been trained

with 15000 examples. Analyzing the errors, it is worth

noting that all the wrong classi�cations are into neigh-

boring classes, for example the patterns of class (1; 0)

are classi�ed as (1;�1).
To verify the suitability of our classi�er in new en-

vironments, we applied the egomotion classi�cation to

a di�erent scene, which has not been used for training.

Then, we get an average recognition rate of about 63%.

In Fig. 3 the best feature map (25 neurons) after

15000 training patterns is shown with the areas which

correspond to the motion classes. It can be seen, that

motion classes, which correspond to opposite motion

directions are also located opposite in the feature map

(topology preserving maps). In Fig. 4 and 5 two other

feature maps (9 and 100 neurons) can be seen. In the

case of nine neurons the class centers have a short dis-

tance in the feature map, which results in more mis-

classi�cations. In the case of 100 neurons, the results

are similar to the best feature map with 25 neurons,

but the computational e�ort and the size of the map

grows, too. In Tab. 1, third column, the classi�cation

results with the Kohonen feature map (25 neurons) are

shown. Compared to the GDC, the results are worse

in general, but acceptable, except for the two motion

classes (0; 1) and (0;�1) (tilt movement of the cam-

era). We assume, that this depends on the positional

low accuracy of the tilt axis; this has to be veri�ed in

our future experiments.

(1,-1) (1,1)(1,0)

(0,1)(0,-1)

(-1,1)(-1,-1) (-1,0)

Fig. 4: Kohonen fea-

ture map for 9 neurons.
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(-1,-1)

(0,-1)
(1,-1)
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(1,1)

(0,1)(-1,1)

Fig. 5: Kohonen map

(100 neurons).

Finally, we have performed experiments for the de-

tection of independent motion in the scene (a moving

toy train) under a known camera motion. The 512�512
sized image was divided into 100 areas of the same size.

Then, for each area the extracted normal ow direc-

tions are compared with the normal ow directions,

corresponding to the known egomotion. As soon as

more than 66% of wrong coaxis vectors (outliers) oc-

curred, we decided this area as an area containing in-

dependently moving objects. In Fig. 6 (left) a correct

result of the detection of an independently moving ob-

ject is shown, based on outlier classi�cation. In Fig. 6

(right) one of those typical errors is illustrated, which

mostly occur on strong background edges. The error

rates on a larger test set are presented in Tab. 2 and

Tab. 3. In Tab. 2 the percentages of images are shown,

in which a moving object has been correctly detected.

An object has not been detected if areas are marked

which does not contain the object or the moving ob-

ject has not been detected at all. In Tab. 3 we tested

whether areas are marked in the case that no moving

object is in the scene.

Independently moving object

total correct incorrect

images detected detected

547 476 71

100% 87.0% 13.0%

Tab. 2: Test of the quality of the detection of an inde-

pendently moving object

Feature extraction (computation of normal ow vec-

tors, coaxis vectors, and computation of one feature



Fig. 6: Left: results for detection of independently

moving objects. Four rectangular areas marking the

moving toy train. Right: typical error. Additional ar-

eas are marked, which do not contain moving objects.

No independently moving object

(false alarm)

total correct result incorrect result

images (no moving object) (moving object)

453 402 51

100% 88.7% 11.3%

Tab. 3: Test of the quality of the detection of an inde-

pendently moving object

vector) takes between 1.39 and 2.42 sec on a HP 735

depending on the number of ow vectors caused by the

movement. The classi�cation time of one feature vec-

tor is about 0.01 sec. The system is implemented in

C++ and integrated in an object{oriented environment

[9].

Additional experiments concerning results for dif-

ferent resolutions of the images, di�erent scenes, and

di�erent pan{tilt devices (Canon VCC1, TRC stereo

head) as well as the error rate during the learning

process can be found in [10]. Presently, the integra-

tion into the system described in [3] is being done.

5. CONCLUSION

In this contribution we presented a statistical approach

to classi�cation of normal ow patterns for motion de-

tection. Two methods have been presented: a GDC

and a Kohonen feature map. The task has been to

classify unknown camera motion qualitatively into nine

classes of di�erent pan{tilt movements. For the GDC

the average recognition rate is over 90%. The Kohonen

feature map is worse compared to the GDC (best result

with a 25 neurons feature map: 80%).

In addition we have proposed a method for the

detection of independently moving objects during a

known camera motion. This method is based on a out-

lier classi�cation in the directions of the normal optical

ow (coaxis patterns). With this approach we detected

motion correctly in over 87% of the images.

The limitation of our approach for egomotion de-

tection is, that so far only qualitative results about the

motion can be obtained, whereas the approach of [4]

yields qualitative data. The advantage of our approach

is, that after a training stage the classi�cation is much

faster, because no exhaustive search is needed.
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