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Abstract. Understanding the underlying processes of aesthetic percep-
tion is one of the ultimate goals in empirical aesthetics. While deep learn-
ing and convolutional neural networks (CNN) already arrived in the area
of aesthetic rating of art and photographs, only little attempts have been
made to apply CNNs as the underlying model for aesthetic perception.
The information processing architecture of CNNs shows a strong match
with the visual processing pipeline in the human visual system. Thus, it
seems reasonable to exploit such models to gain better insight into the
universal processes that drives aesthetic perception. This work shows
first results supporting this claim by analyzing already known common
statistical properties of visual art, like sparsity and self-similarity, with
the help of CNNs. We report about observed differences in the responses
of individual layers between art and non-art images, both in forward
and backward (simulation) processing, that might open new directions
of research in empirical aesthetics.

Keywords: Aesthetic perception, empirical aesthetics, convolutional neu-
ral networks

1 Introduction

Today, researchers from a variety of disciplines, for example, psychology, neuro-
science, sociology, museology, art history, philosophy, and recently mathemati-
cians and computer scientists, are active in the area of understanding, modeling,
or identifying processes related to aesthetic and aesthetic perception. The reason
for such a still increasing interest in aesthetics arises from several questions:

1. How do artists create artwork? What are the underlying processes during
such an artistic creativity?

2. What are the underlying processes in our brain leading to an aesthetic per-
ception of specific images, text, sounds, etc.?

3. Can we compute a universal aesthetic value for art not being biased by
cultural or educational background?
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4. Are we able to optimize creation of art? Can we even support users of cameras
to optimize the artistic value of the images and videos they record?

The first two questions resides more in neuroscience and psychology, with the
goal to propose and verify models for the underlying processes, and to explain
certain observations in aesthetic perception. The third question seems to be a
machine learning problem. However, training a discriminative classifier from data
will always suffer from the possible bias in the training set. The forth question
would benefit from an available generative model that allows the creation or
modification of images with certain aesthetic properties. Besides commercial
interest, artificial creation of visual art with specific aesthetic values, will be
helpful for psychological studies as well to verify answers for the first question.

Our observation is that a computational framework to model aesthetic per-
ception is still missing, although the joint efforts in the intersection of exper-
imental aesthetics, computer vision, and machine learning lead to numerous
interesting findings. While researchers from computer vision and machine learn-
ing are satisfied with accurate prediction of aesthetic value or beauty of images,
researchers from empirical aesthetics hunt for findings and interesting properties
that allow differentiation of art from non-art. However, the connecting element,
a computational model is still missing that would be of significant help towards
answering at least three of the four questions from above.

In this study, we want to show perspectives towards model building in empir-
ical aesthetics. The main motivation of our work arises from recent progress of
and insight in deep learning methods and convolutional neural networks (CNN).
CNNs are multi-layer neural networks with convolutional, pooling, and fully con-
nected layers. Currently, these methods define state-of-the-art in many different
computer vision and machine learning tasks, like object detection and classifica-
tion. More details can be found in Section 3. Due to parallels of the processing
architecture of CNN and that of the visual cortex [1], such models might be an
ideal basis for further investigation of properties of visual art, as well as using
CNNs models to verify hypotheses of empirical aesthetics. In addition to the
arrival of CNNs, also recently various rated datasets of visual art have become
publicly available and enabled further research in the field. Examples are the
AVA dataset [2], the JenAesthetics dataset [3], and - although without rating -
the Google Art Project [4].

2 Progress in Computational and Empirical Aesthetics

One area of research is computational aesthetics. According to encyclopedia
britannica [5], computational aesthetics, is

“a subfield of artificial intelligence (AI) concerned with the computational
assessment of beauty in domains of human creative expression such as music,
visual art, poetry, and chess problems. Typically, mathematical formulas that
represent aesthetic features or principles are used in conjunction with special-
ized algorithms and statistical techniques to provide numerical aesthetic assess-
ments. Those assessments, ideally, can be shown to correlate well with domain-
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competent or expert human assessment. That can be useful, for example, when
willing human assessors are difficult to find or prohibitively expensive or when
there are too many objects to be evaluated. Such technology can be more reliable
and consistent than human assessment, which is often subjective and prone to
personal biases. Computational aesthetics may also improve understanding of
human aesthetic perception”.

Obviously, understanding of human aesthetic perception is not in the main
focus. Successful results from this area of research are measuring aesthetic quality
of photography [6–9] and paintings [10, 11], quality enhancement of photos [12,
13], analysis of photographic composition [14–16], classification of style [17–19],
and composition [20, 21], and painter [22]. Most recently, related work has been
published for videos as well [23–26].

Some works present results for automatic creation of art [27, 28], for mea-
suring emotional effects of artwork on humans [29–31], and for improving and
quantifying quality of art restoration [32]. Commercial use of those results for
building intelligent cameras can be found in [33, 34]. Systems that provide a
(web-based) rating tool of photographs are [35, 36].

The second main area of research related to aesthetics is empirical aesthet-
ics. The aim of empirical aesthetics is to develop and apply methods to explain
the psychological, neuronal, and socio-cultural basis of aesthetic perceptions and
judgments. Compared to computational aesthetics, the aim is more understand-
ing of the processes in aesthetic perception, i.e. why do people perceive music and
visual art as varying in their beauty, based on factors such as culture, society,
historical period, and individual taste. Some researchers are also interested in
general principles of aesthetic perception independent from the so called cultural
or educational filter [37].

While computational aesthetics can be interpreted as an application-driven
procedure, like a discriminative classifier, empirical aesthetics aims more at ob-
servation and verification of hypothesis, i.e. parallels can be drawn to generative
classifiers. A lot of findings have been reported about, for example, common sta-
tistical properties of visual art and natural scenes [38, 39], certain unique prop-
erties of art work, like anisotropy in the Fourier domain [40] or self-similarity
in the spatial domain [41], verified for different artwork, like faces/portraits
[42], text/artistic writing [43], print advertisement/architecture [44], as well as
cartoons/comics/mangas. However, the main shortcoming of most of the work
from empirical aesthetics is the observation-driven approach without succeeding
model building. Although we have observed and identified that there is a differ-
ence between images of visual art and arbitrary images, we do not know how
this differences leads to aesthetic perception in humans. This finding would be a
preliminary to finally understand the process of art creation. In other words, it is
necessary to come up with an initial mathematical and computational model of
aesthetic perception that can be verified and tested. As in many other disciplines
such a model can be used to iteratively gain more insight into the involved pro-
cesses, to verify hypotheses, to adapt and improve the model itself, and to even
synthesize artwork as feedback for human raters in psychological studies. To the
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best of our knowledge, there exists no (mathematical or computer) model for
aesthetic perception capable to match with findings from empirical aesthetics,
i.e. more effort must be put into developing such a model that can be used to
explain known, unique properties of visual art and to relate those properties to
processing principles in our visual cortex/brain.

In this study, we investigate the potentials of CNNs with respect to model
building for aesthetic perception by asking the following questions:

– Is there any difference in the representation of images of artwork in CNNs
compared to standard images (Section 6)?

– Which representation level (layer) of a CNN shows the most prominent dif-
ferences (Section 6)?

– Is there any difference in the findings, if the CNN is trained with images
from natural scenes compared to one that is trained on ImageNet? Can we
confirm the hypothesis that the human visual system is adapted to process
natural scenes more efficiently and that this adaptation builds the basis for
aesthetic visual perception (Section 6)?

– Can we confirm some of the hypotheses from prior work in terms of sparse
coding/processing for art, natural scenes, and general images (Section 7)?

– Can CNNs serve as a computational model to generate or modify images
with certain universal aesthetic properties (Section 8)?

3 Convolutional Neural Networks

Convolutional neural networks are parameterized models for a transformation
of an image to a given output vector. They are extensively used for classifica-
tion [45], where the output vector consists of classification probabilities for each
class, and detection problems [46, 47], where the output vector may additionally
contain the position of certain objects [47]. The model itself is comprised of a
concatenation of simple operations, the so called layers.

The number of parameters of such a model in typically used architectures
is often in the order of millions. Thus, training from a large-scale dataset is re-
quired. The interesting aspect that motivated our research is that there is strong
evidence that such models can indeed learn very typical structural elements of
natural images and objects. This was shown for example in the works of [48]
for a CNN learned from ImageNet, which is the common “birthplace” of CNNs
in vision currently. Furthermore, there has been further empirical evidence that
these models are better suited for modeling the visual processing of human vi-
sion. Agrawal et al. [49], for example, investigates CNNs for neuroscience studies,
where human brain activity is predicted directly from features extracted from
the visual stimulus. In addition, Ramakrishnan et al. [50] compares CNNs with
other layered vision models in an fMRI study.

Let’s walk through a sample architecture, which is sketched in Fig. 1. The
input for our network is in our case a single image. The first layer is a con-
volutional layer, which convolves the image with multiple learned filter masks.
Afterwards, the outputs at neighboring locations are optionally combined by
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Fig. 1. Example of a convolutional neural network architecture.

applying a maximum operation in a spatial window applied to the result of
each convolution, which is known as max-pooling layer. This is followed by an
element-wise non-linear activation function, such as the rectified linear unit used
in [45]. The last layers are fully connected layers which multiply the input with a
matrix of learned parameters followed again by a non-linear activation function.
The output of the network are scores for each of the learned categories. We do
not provide a detailed explanation of the layers, since there is a wide range of
papers and tutorials available already [45]. In summary, we can think about a
CNN as one huge model that maps an image through different layers to a se-
mantically meaningful output. The model is parameterized, which includes the
weights in the fully connected layers as well as the weights of the convolution
masks. All parameters of the CNN are learned by minimizing the error of the
network output for an training example compared to the given ground-truth
label.

Interestingly, many parts of the model can be directly related to models used
in neuroscience [51] for modeling the V1-layer for example.

4 Dataset

We use all images of the JenAesthetics dataset [3], which is a well established
dataset in the area of computational aesthetics. The dataset contains images of
1625 different oil paintings by 410 artist from 11 different art periods/styles.

The content or subject matter of a painting plays a crucial role in how an
observer will perceive and assess a painting. 16 different keywords identify the
most of the common subject matters. The subject matters are: abstract, nearly
abstract, landscapes, scenes with person(s), still life, flowers or vegetation, an-
imals, seascape, port or coast, sky, portrait (one person), portrait (many per-
son), nudes, urban scene, building, interior scene, and other subject matters. 425
paintings have 3 and 1047 paintings have 2 subject matter keywords.

These images will serve as a representative sample of the category “art”.
Images not related to art paintings (“non-art”) show various semantic concepts
like plants, vegetation, buildings etc. Specifically, we used 175 photographs of
building facades, 528 photographs of entire buildings, mostly without the ground
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floors to avoid the inclusion of cars and people, 225 photographs of urban scenes.
We also included an additional dataset [52] with 289 photographs of large-vista
natural scenes, 289 photographs of vegetation taken from a distance of about
5-50m, and 316 close-up photographs of one type of plant. A detailed description
of the used data can be found in [53, 42, 52].

5 Analyzed Models and Experimental Setup

Learning convolutional neural networks is done in a supervised fashion with
pairs of images and the corresponding category labels [45]. Relating this to the
processing in the brain, supervised learning of networks can be seen as teaching
with different visual stimuli towards the goal of categorization in a specific task.

To study visual processing for different types of stimuli in the teaching
phase, we train CNNs with a common architecture from three different datasets.
We make use of the AlexNet [45] architecture. The first model is trained on
roughly 1.5 million images and 1000 common object categories of the ImageNet
Large Scale Visual Recognition Challenge 2012 [54] dataset, and is denoted by
imagenet CNN [45]. Second is the places CNN [55], which is trained on over 7
million images divided into 205 scene categories including indoor and outdoor
scenes, comprised by natural and man-made scenes. Third and last is a CNN
trained on 125.000 images showing 128 categories of natural scenes. These im-
ages were taken from ImageNet and the categories were manually selected. We
refer to this network as natural CNN and it achieves an accuracy of almost 70%
on the 1280 held-out test images of the natural scene categories. The reason we
added this network to our analysis is that it allows us to study a model com-
pletely learned with natural non-human-made visual stimuli. In addition, we also
experiment with the deeper architecture VGG19 proposed by [55].

In the layer names used in the following, the prefix conv refers to the output
of convolutional layers and fc correspond to the output of a fully connected
layer.

6 Separation of Art vs. Non-Art at Different Layers

In the beginning, we asked whether there is any difference in the representation
of images (art vs. non-art) over the individual layers, i.e. at which level of the
abstraction of an input image do we observe the largest difference. We also want
to test whether there are differences in processing art images, if we initially train
the CNNs on different datasets. With this experiment we want to verify whether
the adaptation of the visual system of humans during evolution towards natural
scenes plays a role for the underlying processes of aesthetic perception.

Measuring the differences is a non-trivial task since the output of a layer is
high-dimensional. Therefore, we decided to use a classification approach, where
we estimate the differences between both categories (artwork and all other im-
ages) over the individual layers by classification performance. The idea is, if the
feature representations of the two categories are similar, the classifier would not
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be able to separate the two classes. In particular, we learn a linear support vector
machine classifier using the layer outputs for each image of the two categories.
The classifier is learned on 25% of the data and the classification performance is
measured using the remaining 75%. As a performance measure we use the area
under the ROC curve, which is well suited for binary classification problems,
since it’s value is invariant with respect to the distribution of the categories in
the test dataset. To increase the robustness of our estimates, we also sample 5
different splits of the data into training and testing subset. The SVM hyper-
parameter is tuned using cross-validation for each run of the experiments. We
restrict our analysis to linear layers, i.e. fully connected and convolutional layers.
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Fig. 2. Which layers of a CNN show the highest differences between artwork and all
other images? We evaluate the separation ability of (1) imagenet CNN (2) natural CNN

and (3) places CNN.

The results of our analysis are given in Fig. 2 for all three of our networks.
Regarding the maximum absolute performance, the imagenet CNN showed the
best performance. For imagenet CNN and places CNN, the differences between
artwork and non-artwork increase up to the conv4 layer and stay constant for
later layers, which is not the case for natural CNN. Interestingly, natural CNN

shows the worst performance, i.e. the statistics of images from natural scenes
are not as well suited for separation of art and non-art images later on. This
observation seems to be contradictory to the hypotheses that the adaption of
the visual system toward natural scenes during evolution plays some role in
explaining aesthetic perception. However, a more technical explanation is more
likely. Since the art images under investigation show basically objects and scenes
that are also present in ImageNet and Places data set, the representational power
of those CNNs are superior to the one trained solely on natural scenes.
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7 Are Artworks Characterized by Sparse
Representations?

Next, we asked whether hypotheses from [37] and findings from [38] can be ver-
ified for representations in CNNs as well. One hypotheses is that a universal
model of aesthetic perception is based on sparse, i.e. efficient coding, of sensory
input [37, Chapter 4]. If activities in the visual cortex can be coded with sparse
representations, they allow for efficient processing with minimal energy. Compar-
ing statistics of natural scenes and visual art showed that these two categories
of images share a common property related to sparsity in the representation [38,
39]. Hence, we analyze next the sparsity of the output representations in differ-
ent layers of a CNN. Sparse CNN representations of visual stimuli correspond
to only a few activated neurons with non-zero output for which we first need to
define a mathematical measure.

Sparsity measure As a sparsity measure for a representation, we use the `1/`2
value given in [56], which we additionally normalize as follows to compare values
of this measure also for vectors of different dimensionality. Let x ∈ RD be a
vector of size D, our sparsity is therefore defined as follows:

sparsity(x) =
1√
D

‖x‖1
‖x2‖2

=

∑D
k=1 |xk|√

D ·
∑D

k=1 x
2
k

≤ 1 . (1)

This sparsity measure is small for sparse vectors, e.g. sparsity([1, 0, . . . , 0]) = 1√
D

,

and high for non-sparse vectors, e.g. sparsity([1, . . . , 1]) = 1. In contrast to the
standard `0 sparsity measure, where simply non-zero components are counted,
our sparsity measure has the advantage of being smooth and taking into account
approximate sparseness, e.g. with vectors having values close to zero relative to
the overall magnitude.

Sparsity values for art and non-art images and different CNNs Fig. 3 shows the
distribution of sparsity values for pairs of layers and different networks. The fig-
ures reflect our results obtained in Section 6: the discrimination ability increases
for imagenet CNN and places CNN in later layers. It is indeed interesting that
this is reflected in the sparsity values as well. Art images show more sparse rep-
resentations at layer fc6 than non-art images. The lower representational power
of the natural CNN is confirmed in this analysis as well. Images from art and
non-art show no significant difference in terms of sparsity over the individual lay-
ers. However, the representation in the intermediate layers (see conv1 vs. conv5)
is systematically more sparse for natural CNN, ranging from values 0.09 to 0.14
compared to values from 0.14 to 0.28 for the other two CNNs. So far, no con-
clusion seems be to directly possible. However, this experiment shows that there
are differences in sparsity between layers and networks when comparing art and
non-art images.
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Fig. 3. Distribution of sparsity scores for art and non-art images computed for the
outputs of two layers. Columns: conv1 vs. conv3, conv1 vs. conv5, conv1 vs. fc6. Rows
correspond to different networks: imagenet CNN, natural CNN, and places CNN. Smaller
values correspond to higher sparsity. Best viewed in color.

8 CNN as Generative Model: Transferring the Statistics
of Artworks

In the following, we analyze the change of intrinsic statistics of images, when we
apply methods that allow for optimizing common images towards being “art-
like”. This includes the texture transfer method of [57] as well as the method of
[58], which we modified to maximizing the probability of the image for belonging
to the “art category”. We can indeed show that transferring images towards art-
like also transfers intrinsic statistical properties, like self-similarity or sparsity,
towards art-like.

8.1 Texture transfer

The work of [57] presented an approach for transferring the style from a paint-
ing to a different image. In this section, we will use this idea to visualize and
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understand the type of style information encoded in each layer of the CNN. It
will turn out that each layer captures a fundamentally different aspect of the
style, which can also be connected to the observations concerning sparsity of the
previous sections.

The style transfer approach of [57] takes two images as input. One image
provides the content and the second one the style, as shown in Figure 4. Starting
from a white noise image, we now try to find a new image, which matches the
content of the first and the style of the second image. This is done by changing
the image step-by-step such that the neural activations at selected layers match
the content and the style image, respectively. For the style image, the entries of
the Gram matrix Gl =

∑
i,j(x

l
i,j) · (xli,j)T of the style layer should match instead

of the activations itself. Here, xli,j = (xli,j,k)k denote the feature descriptor at
position (i, j) of layer l. As an example, for the first output image in Figure 4, the
white noise image is optimized such that the activations of layer conv4 2 match
the content image and the Gram matrix of the activations of layer conv1 1 match
the style image.

conv4_2

conv1_1 conv2_1 conv3_1 conv4_1 conv5_1
conv2_1
conv3_1
conv4_1

conv1_1

conv5_1

Style

Content

Fig. 4. Texture transfer for the content image shown on the top left and the style
given by the image on the bottom left. The content was defined by the activations of
the layer conv4 2 for all images. The style was defined by the bilinear activations of
different layers as annotated below each image. Best viewed in color.

How does self-similarity change? With the above technique, we analyze the
process of transforming an image into a more artistic image by transferring
a mean style of artworks to images. We use all images of the JenAesthetics
database, compute their mean Gram matrix and use it as the definition of “style”
in the above algorithm.

Self-similarity is a well-known measure used in computational aesthetics to
characterize an image [41, 42]. The question arises how the values of this mea-
sure change while optimizing a regular image towards an artwork. The results
are given in Fig. 5, where we refer to the image after the texture transfer as
“Art-transfer image”. For all the images shown in the Fig. 5, we observe a sig-
nificant increase in self-similarity after applying the texture transfer technique.
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It is worth noting that the self-similarity values after texture transfer are in the
range of artwork for not-art images as well. Even art images show an increase
of self-similarity (second row, first image). Please also observe the “generation”
of a synthetic art image in the last row. In this case, no content image was con-
straining the generation process. As in the other cases, we started with a white
noise image and modified it such that the style matches the mean art feature.

Original image Art-transfer image Original image Art-transfer image
0.4961 0.7843 0.4452 0.7190

Original image Art-transfer image Original image Art-transfer image
0.6833 0.7591 0.4660 0.6604

Original image Art-transfer image Original image Art-transfer image
0.4537 0.6608 0.4582 0.7026

No content image Art-transfer image
0.6880

Fig. 5. Self-similarity changes when optimizing regular images towards artworks. We
use the texture transfer technique of [57] in this case. The numbers below the images
show the self-similarity scores from [42].

A second investigation concerns the change of the self-similarity score over
time during the texture transfer. Fig. 6 depicts the progress for three examples.
For each example, the plot is shown above the content as well as the final image.
The first plot combines the input image with the style of the painting “Trans-
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verse Line” by Kandinsky and the second one with the painting “Clin d’oeil à
Picasso” by Bochaton. The self-similarity score of the generated image is shown
in blue. As shown already in the previous figure, the self-similarity changes when
transferring style to a new image. The change, however, is not monotonic but
shows in the first ten iterations a dramatic increase from 0.5335 to 0.8056 and
0.8427, respectively, and thus surpasses the self-similarity score of the target
style image depicted in green. After the initial overshoot, the score gets closer
the one of the painting, but converges at a higher level of 0.7581 and 0.7363,
respectively. The third subplot depicts the change over time for an optimization
towards the mean art style. Similarly, there is an initial overshoot, followed by
a short descent and a strong increase towards the final value of 0.7155.

We belief that these initial experiments with the texture transfer method
indicate that CNNs are capable as a generative model in empirical aesthetics and
can be exploited to generate images with specific, statistical properties related
to an aesthetic value of the image.

8.2 Maximizing art probability

Adapting DeepDream towards optimizing art category probability Instead of in-
directly optimizing images towards artworks by transferring the texture as done
in the previous section, we can also perform the optimization directly.

First, we fine-tune a convolutional neural network to solve the binary clas-
sification task artworks vs. non-artworks. The original DeepDream technique of
[58] tries to modify the image such that the L2-norm of the activations of a
certain layer is maximized. We modify this objective, such that the class proba-
bility for the artworks category is optimized. The algorithm for the optimization
is still a gradient-descent algorithm as in [58] using gradients computed with
back-propagation.

Details about the fine-tuning Fine-tuning is done with a pre-trained imagenet CNN

model. In particular, we set the learning rate to 0.001 and the batch size to 20
and perform optimization with the common tricks-of-the-trade: (1) momentum
with µ = 0.9, (2) weight decay of 0.0005 and (3) dropout with p = 0.5 applied
after the first and second fully connected layers.

How does the self-similarity score change? Fig. 7 shows quantitative results of
our analysis, where we compared the self-similarity scores before and after the
optimization towards the artwork and the non-artwork category. As can be seen,
the self-similarity scores increase in both cases for a large number of images.
This is not the expected result when considering the findings of the texture
transfer technique. So far, optimizing towards category probabilities seems not
to be a reasonable method for enforcing certain statistical properties of art or
non-art images. However, this is not a surprise, considering the amount of infor-
mation contained in category probabilities compared to the target image style
represented by the Gram matrix.
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Fig. 6. Change of the self-similarity score over time during the texture transfer given
an input image and a painting. We depict the change for two different styles transferred
to the input image shown on the left. The plots show the self-similarity score of the
image after iteration k in blue and the self-similarity score of the painting in green.
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Fig. 7. Self-similarity scores before and after the optimization with respect to the
artwork and the non-artwork category.

9 Conclusions

This work started with the observation that a computational model is missing in
empirical aesthetic research. Such an initial model would allow the verification
of hypotheses, to generate and modify images for psychological studies, to refine
hypotheses as well as the model, and to initiate succeeding experiments and
investigations along the way to understand the underlying processes in aesthetic
perception.

We started to investigate the potentials of CNNs in this area, extending
its previous use as pure classifier. The main goal was to figure out whether
already known statistical properties of visual art, like sparsity and self-similarity,
are reflected in the representation of images by CNNs as well. In addition, we
analyzed two methods to use CNNs for generating new images with specific
category properties (DeepDream) or style properties (texture transfer).

Our results indicate that there are statistical differences in the representation
over the hierarchies of layers in CNNs. Those differences not only arise from the
input image being processed, but also from the underlying training data of the
CNN. The main finding is that sparsity of activations in individual layers is one
property to be further investigated. This is in accordance with previous findings.

In addition, we applied CNNs as a generative model using techniques from
literature. Interestingly, the method of texture transfer is able to modify self-
similarity in images, a property that has been previously used to characterize art
work. Hence, generating images with aesthetic properties seems to be possible
as well.

So far, we only started the investigation. There are several aspects not consid-
ered so far, for example, different network architectures, different other statistical
properties of aesthetic images, like fractality or anisotropy, and how such prop-
erties can be mapped to arbitrary images. These aspects are subject to future
work.
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