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Plenoptic models, representatives are the lightfield or the lumigraph, have been successfully applied in computer vision
and computer graphics in the past five years. The key idea is to model objects and scenes using images and some
extra information like camera parameters or coarse geometry. The model differs from CAD–models in the photorealism
that can be achieved and is thus superior in applications where the realism of the model is of importance. From the
point of view of learning based robot vision these models have the additional advantage that they can be acquired fully
automatically from image sequences.
The paper shows how such models can be applied in robot vision. Starting with the theoretical principles, the automatic
generation of plenoptic models is discussed. An new method is introduced for direct rendering from arbitrarily taken
real views. The adaptive use of geometric information makes it possible to scale the model accuracy with respect to
available computation time.
In two typical applications from robot vision the benefits of this kind of model is demonstrated. The experimental
results proof our claim that plenoptic models are useful in robot vision.

1 Introduction

Models of objects and scenes and automatic model building
is one important aspect in robot vision. The main criteria for
good models are uniqueness and stability. A model is applied
by comparing the information stored within in the model with
the recorded image data. This general matching procedure
returns the information that best matches the model with
the image data, for example the 3–D position and rotation
angles of an object in 3–D, or the class number, for which
the a posteriori probability of an object given the image data
is maximized. Since every kind of model shall serve as an
abstraction of the object or scene in terms of primitives, the
problem is, which kind of primitives the model shall consists
of, and how difficult it is to reliably extract those primitives
from image data. Primitives might be matrices about pixel
brightness, segmentation objects like lines, curves, corners,
or geometric representations to hold knowledge about 2D
and 3D shapes.

Models based on CAD descriptions (wire frames, or sur-
face boundary representations like polygons, B–splines, etc.)
are advantageous if one has to deal with man made objects.
A problem is how to automatically build such a model from
sample views, if a CAD model is not readily available. Sta-
tistical models on the other hand are able to model statisti-
cal properties of primitives. Also model building is straight
forward using techniques from parameter estimation. The
problem is that in general a huge number of training images
is necessary to robustly estimate the parameters of the sta-
tistical model, or in other words, to find those parameters,
that represent the object or scene adequately.

In this article, we propose a new kind of model for robot
vision, the so called plenoptic model, a model that can be
acquired fully automatically. This is regarded in this article as
learning. The key idea is to collect a sequence of images from

objects or scenes using a hand–held camera. These images
together with some extra information, which is computed
automatically during model building, serve as a model of the
object or scene. Using this model photo–realistic views from
objects and scenes can be created (rendered) synthetically,
even if the view has not been observed before.

In the next section we give a short literature overview on
plenoptic models. In Section 3 we describe how we calibrate
an image sequence, which is preliminary for model building.
Techniques for rendering from the plenoptic model are pre-
sented in Section 4. All methods for rendering from the
plenoptic model up to now make assumptions that are not
valid when taking image sequences with a hand–held cam-
era. Thus, we developed a new, efficient method for direct
rendering from real views with local geometry (Section 5). In
Section 6 two applications of plenoptic models are presented
together with results that show the benefits and problems of
the method. The paper concludes with references to other
applications of plenoptic models and an outlook to future
work.

2 Plenoptic Modeling

The plenoptic function [1] describes everything that can be
seen within a scene as a function of a view point and view-
ing direction returning a color value. If an image is taken at
position t, a whole bundle of viewing rays is recorded (see
Figure 1). Together with its color value, each ray corre-
sponds to one sample of the plenoptic function that is given
here as a three–valued function of the pixel position q and a
projection matrix P . The function values are the three com-
ponents of the observed color represented by RGB–values.

By taking lots of images from different view points we
get a more or less dense sampling of the plenoptic function.
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Figure 1: The plenoptic function measures the color that can
be observed at the point t in a direction that is specified by
a given pixel position and the camera parameters. A whole
image corresponds to a bundle of viewing rays intersecting
at the projection center of the camera. Each viewing ray is
one sample of the plenoptic function.

Having the complete plenoptic function it would be easy to
render new virtual views from the scene by just composing
the new image evaluating the plenoptic function for each
pixel.

In practice, only a finite number of scene views can be
recorded and therefore we never will be able to determine the
complete plenoptic function. Assuming a fully transparent
medium the observed intensity does not change if the viewing
position is changed along a viewing ray. The observable color
value depends on the selected viewing ray, not on the point
of observation and therefore one dimension can be reduced.

In [13, 6] the light–field approach has been introduced
to render views efficiently if the viewing rays are sampled
in a fixed regular structure. Two planes in space are fixed
and on each plane a discrete grid is defined. All viewing
rays passing one grid point on each of the two planes can be
parameterized.

To build this regular structure a robot arm moves a cam-
era to grid positions in one plane viewing an object. Because
of its regular structure, the two–plane parameterization is
not very flexible and does not fit to an image sequence be-
ing recorded with a hand–held camera. The only advantage
of the regular structure is that it is very suitable for efficient
rendering using texture mapping hardware. In [6] a way has
been shown to interpolate the light field structure from ar-
bitrary posed camera views. This method entails a loss of
accuracy solely for creating this regular data structure called
lumigraph

In [14] a plenoptic scene model is built from two
panoramic views taken at distinct viewing positions. Each
panoramic view is composed of many camera images that
are recorded in many directions with a coinciding projection
center. Although having many viewing rays passing the two
viewing positions, the overall–sampling of viewing rays is not
very dense.

Instead of modeling a viewing ray originating from a view
point in a given direction, it can be seen as a ray that ends at

a given scene point in a given direction. The dependency of
a surface point on the viewing direction is covered in the so–
called bidirectional reflectance distribution function (BRDF)
[5, p. 663] that models the relation between incoming and
outgoing radiance. For the appearance of a point it does not
matter how its color value depends on the incoming radiance
and it consequently can be modeled by the color values of all
these viewing rays. Therefore samples of the plenoptic scene
model also can be represented by modeling the surface geom-
etry of the scene and its appearance in different directions.
This approach has been used in [3, 20]. In [3] the geometry
of the scene is modeled by geometrical primitives and their
appearance is represented by a set of texture images with as-
sociated viewing directions. In [20], the geometry is modeled
by surface points and so–called lumispheres being associated
to each of these points. This modeling has the advantage
to be very compact, but its disadvantage is that the geome-
try of the surface must be known exactly. To get the exact
geometry in [3] the user must interact to reconstruct geo-
metrical primitives like plane patches or cylinders. In [20] a
range–scanner is applied to ensure geometrical accuracy.

For our approach, we decided to represent recorded
plenoptic samples as the whole set of recorded images to-
gether with retrieved camera parameters. This strategy sim-
plifies the process of building up the plenoptic model but it
claims increased demands on the rendering method.

3 Calibration

For plenoptic scene modeling the movement and the projec-
tion properties of the recording camera must be known. We
compute this information from image data alone with meth-
ods we have described in detail in [8]. Here only a short
overview is given.

In literature lots of approaches exist for determining cam-
era pose and projection properties from multiple images. We
call this task calibration. An extensive overview over most
techniques is given in [7]. For the case of calibrating lots
of images and lots of feature points the so–called factor-
ization methods solve the problem simultaneously within a
single step for all the data [15, 18]. Mainly because of this
advantage we decided for this class of techniques. Before a
factorization method is applicable feature point correspon-
dences must be extracted from the input images.

The goal of tracking is to determine the 2-D locations of
one common 3-D point in many projections. In our exper-
iments we apply the differential tracking method described
in [17] for extracting these 2-D locations from an image se-
quence resulting in so–called trails. This method approx-
imates the image function by the linear term of a Taylor
series and minimizes a residual function defined over a fea-
ture window by setting the derivatives to zero resulting in a
linear equation system. The algorithm is designed such that
either a pure displacement or additionally an affine transfor-
mation of a feature window can be considered. We apply the
estimation of a pure displacement for tracking a feature win-
dow from frame to frame. Affine distortions are considered
to re–adjust the location of the feature window by compar-
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ing the currently tracked window with the feature window of
the first occurrence. With this technique error accumulation
during tracking can be avoided.

As mentioned above, the factorization methods are capa-
ble of solving the calibration problem for many views simul-
taneously. But there exists the drawback that all considered
feature points must be visible and detectable in all frames.
As this constraint is not fulfilled in our case we only can
start with a partial sequence, which is completely covered
in many trails. In [8] we have developed an algorithm that
automatically finds a partial image sequence from a given
set of trails, that is as long as possible for a given minimum
number of completely visible trails.

The basis of our calibration are the factorization methods
of [15] and [18]. Where in [15] a weak–perspective camera
model is assumed, in [18] the approach has been extended
to the perspective projection model. The first approach only
needs the pure 2-D point information but introduces a bias of
the solution because of the approximative weak–perspective
projection model. The second approach additionally to the
2-D points needs information about the depths, called pro-
jective depths, but if this information is available at least ap-
proximatively the result is better than for the first approach.

We combine the two approaches as follows: first we ap-
ply the weak–perspective factorization method, we convert
the weak–perspective projection matrices into perspective
ones, and add a non–linear optimization. From this result
we determine the projective depths and take them as input
for the perspective factorization method followed by a self–
calibration step and a non–linear optimization.

4 Visualization by Interpolation
and Extrapolation

We have seen several examples for the acquisition and rep-
resentation of plenoptic scene models. In this section meth-
ods are discussed being capable of rendering new views from
these models.

4.1 Interpolation with known depth

Each viewing ray can be interpreted as the color value of sur-
face point w seen from a given direction. The color value of
a virtual viewing ray passing w can be determined by inter-
polating between the neighboring rays. This method is used
by the techniques [3, 20]. When generating such plenoptic
scene models, the appearance of one scene point w from
many different viewing directions must be determined from
recorded images. The reliability of the object–centered in-
terpolation highly depends on the accuracy of the surface
geometry. Because of this reason, these systems do not re-
construct the geometry automatically from the image data
but require user–interaction or additional hardware to re-
trieve highly accurate depth information.

w1
w2

erroneous scene surface

true scene surface

Figure 2: Interpolation with depth uncertainty. A viewing
ray (solid line) is interpolated from two recorded viewing rays
(dashed lines) that have been selected assuming an erroneous
scene surface.

4.2 Interpolation with depth uncertain-
ties

In our case depth information is reconstructed from the in-
put images by interpolating the 3-D scene points being a
side–product of the calibration procedure. This approach is
not very accurate and therefore the object–centered interpo-
lation cannot be applied here. Nevertheless photo–realistic
rendering is possible even when the geometry is just known
approximately. The theoretical proof of this fact has been
derived in [2] for the light field parameterization.

Figure 2 shows how artefacts are caused. When inter-
polating the color values from two different viewing rays as-
suming an erroneous surface point, then distinct parts of the
scene surface are overlayed causing a “doubled” appearance.

To reduce this effect, in [6] a method is developed consid-
ering an approximate geometry model when using the light
field data structure. Related to this approach is the method
[16] that assumes to have two recorded views and that is
able to render virtual views from viewpoints lying on the
connecting line of the original viewpoints.

4.3 Extrapolating views

In the following we discuss methods for extrapolating views
meaning that the virtual viewing position does not need to
lie in the range of the viewing positions occurring during
acquisition.

It is assumed that besides one or more recorded views a
model of the geometry is available. The idea is to map the
original view onto the surface of the scene and to view this
mapped texture from a new, virtual viewpoint. To do this,
it is assumed that a surface point appears identical from all
viewing directions, therefore the surface is assumed to be
Lambertian. In [14, chapter 3] the theoretical background
of this technique is discussed.

The warping methods have the disadvantage that no
view–dependent changes are modeled and therefore effects
like specularities are not modeled accurately. Moreover it
is assumed that the geometry of the surface is perfectly
known. As already mentioned, the surface geometry that
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can be reconstructed automatically from the image sequence
has limited accuracy. When using it for view–extrapolation,
conspicuous distortions appear.

5 Direct Rendering from Real
Views and Local Geometry

In the last section we have seen different methods for ren-
dering views from a given set of plenoptic samples. For our
application, none of these approaches fits perfectly. The
Lumigraph approach [6] has the advantage of allowing to
consider depth information for view interpolation. But this
approach needs a 3-D model of an object being consistent
to all input views, it is bound to the regular light–field struc-
ture, and it is not designed for extrapolating views. The
approach of view–dependent texture mapping [3] is able to
extrapolate views, but it needs an exact geometrical model
for reliable results and it is not able to interpolate suitably
between densely spaced views.

We see a gap between these approaches filled by the
method described in the following. The main requirements
that are met in our approach are:

• We render directly from the originally recorded images
without creating a special light–field structure.

• We use local depth maps instead of a global consistent
geometry model, since it is not trivial to fuse local
depth information to build up a reliable global model.

• Our approach is scalable. This means that there exists
a possibility to adjust the quality of rendered results
in favor of computational speed.

5.1 Mapping via triangles

For the following methods it is substantial to map an image
onto a 3-D triangle and vice versa. The triangle is built by
the three points xi, 1 ≤ i ≤ 3. Each point w within the
triangle can be represented by

w =
(
x2 − x1 x3 − x1 x1

)( y1

y2

1

)
. (1)

The point w is perspectively projected into a given camera
by q ∼ Pw where q is the 2-D point in homogeneous coor-
dinates, w is the 3-D point in homogeneous coordinates, the
symbol ∼ means the equality up to scale and P ∈ IR3 × IR4

is a projection matrix. Let P be represented as the con-
catenation of M ∈ IR3 × IR3 and m ∈ IR3: P = (M |m).
Together with equation (1) this yields

q ∼M
(
x2 − x1 x3 − x1 x1 +M−1

m
)︸ ︷︷ ︸

H

(
y1

y2

1

)
.

(2)
Therefore each mapping between a local plane coordinate
system and a camera image can be described by the 3 × 3
homography matrix H. Vice versa by multiplying H−1 by

grid of depth values

virtual viewing rayrecorded view

Figure 3: Intersection of the viewing ray with the depth map
as search between the planes of minimum and maximum
depth.

a homogeneous image vector, one gets the corresponding
point in the coordinate system of the triangle.

We can extend this mapping procedure to re–project the
image of one camera (marked by index 1) onto the triangle
followed by a projection into another camera (marked by in-
dex 2): q

2
= H2H1

−1
q

1
. The matrix H2H1

−1 describes
the projective mapping from one camera to another via a
given triangle. As projective mapping can be performed by
graphics hardware, this step can be done in real–time.

5.2 Combined interpolation and extrap-
olation

In the following a technique is described being capable of
combining the advantages of view interpolation with the
ability of extrapolating views without the necessity of distin-
guishing explicitly between these two aims. This technique is
based on the results given in earlier publications. In [12] an
approach is shown that assumes a single plane as approxima-
tion of scene geometry. This approach has been extended
in [11] to be capable of interpolating between views with
associated depth maps. Here we describe the extension for
extrapolation. The complete algorithm is described in detail
in [8].

Suppose having a single view together with the according
depth map as visualized in Figure 3. For reconstructing the
color value of a given viewing ray, the intersection point with
the scene surface is needed. Unfortunately this point cannot
be found by a simple look–up. It rather must be found by
searching. In [19] an efficient way for finding this hit point
is described.

We choose a regular triangulation of grid positions in
the virtual destination image as shown in Figure 4. For each
grid position it is tried to determine 3-D points by applying
the search method mentioned above to each recorded image.
Because of occlusion and errors in depth maps this method
in general leads to multiple hypotheses for the according 3-
D points. To judge the different hypotheses, for each grid
position j weight factors ξjk are determined for all 3-D points
wjk that have been recovered in the views k: ξjk = (π −
|α|)2, where α is the angle between the virtual viewing ray
corresponding to the 3-D pointwjk and the particular source
ray.
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Figure 4: Adaptive scene geometry. For a regular image grid
the adaptive scene geometry is determined by intersecting
viewing rays of grid points with reconstructed depth maps.

Each triangle of the virtual view is drawn by overlapping
up to Nv triangles from different recorded views. In our
experiments we have chosen Nv = 5. For each triangle
all contributing source views are determined. If more than
Nv views could contribute to a particular triangle, those Nv

views are selected that provide the highest weights. They are
mapped from the recorded views into the virtual view via the
3-D plane defined by the particular triple of 3-D points with
the method described above. These triples in general are not
identical for different views, because it was not ensured that
the vectors wjk are equal for different indices k.

The contributing views are overlayed by weighting and
adding the triangles that are mapped from the original views
into the virtual view. The weights of a contributing triangle
at each triangle corner is determined by the weight ξjk di-
vided by the sum of weights of all contributing views. This
scaling ensures that the total sum of weights is 1.

The scalability of the approach is obtained by adjusting
the resolution of the initial triangulation. When increasing
the number of grid points, the number of reconstructed 3-D
points also is increased and therefore the surface geometry is
sampled more exactly at the expense of additional computa-
tional cost. If we want to reduce computational complexity,
the number of grid points can be decreased and therefore the
geometrical approximation is more coarse in favor of compu-
tational speed.

If the virtual view is outside the viewing range of the
recording camera the views are extrapolated. Those views
are overlayed that are next to the virtual viewing position.
Having errors in the depth maps, geometrical distortions be-
come more obvious the larger the distance to the next record-
ing camera gets.

This approach enables the rendering of virtual views from
an arbitrary image sequence recorded in advance. Applying
the calibration procedure described in Section 3, no addi-
tional information about the scene or recording conditions is
necessary.

6 Applications

Two examples are presented in the following. In the first
example, object tracking, it is shown how plenoptic models
serve as object model directly in an robot vision task. In
the second example the whole scene is modeled. The model
is taken for localizing a mobile robot using a particle filter
approach.

6.1 Model Based Object Tracking

In template based object tracking the prediction of the ap-
pearance of the object in the next image is the most impor-
tant aspect for successfully tracking a moving object. With-
out a suited update mechanism, varying appearance of the
object due to rotation, is one of the main reasons for a failure
during tracking.

Plenoptic models are a perfect model for the mentioned
update mechanism of the template. If tracking is done in
3–D and also the pose of the object is estimated, the ap-
pearance of the object in the next image can be predicted.

Different experiments have been performed for sequen-
tially estimating the pose of a moving object using a particle
filter approach. In particle filters, each particle can be in-
terpreted as a hypotheses about the true position and pose
of the object. The weight of the particle is proportional to
the likelihood of that hypotheses. During the reweighting
(or updating) of the particles, the weight (or probability) of
each particle has been computed by comparing the acquired
image with the image that should be seen if the hypotheses
would be true. The imaginary image is rendered from the
plenoptic model.

To retrieve ground truth data we simulated a movement
of a toy elk by moving a camera over a predefined path on
a hemisphere around the elk. In a training step a plenoptic
model of the elk has been reconstructed. During tracking for
a given estimate of the pose of the object a synthetic image
is rendered using the plenoptic model. Comparing the real
image with the synthetic one result in a rating of estimated
pose.

In Figure 5 the tracking results are shown. By visually
comparing the real and the rendered images the reader will
observe that the estimated pose of the elk is quite accurate,
although the brightness between real and rendered images
varies. The mean estimation error in the pose for different
movement paths on the hemisphere was between 2.4 degree
and 3.4 degree. The computation time for 100 particles in
the particle filter approach is 14 secs per frame on a Pentium
III/800 MHz, which is far from being frame-rate. One prob-
lem is the huge numbers of particle that are usually necessary
for reliable state estimation.

6.2 Vision Based Ego–Localization

Plenoptic models might also serve as scene models. In
the area of robot vision and ego–localization they compete
with classical models, like CAD–models of the environment.
The advantage of plenoptic models is obviously the photo–
realism.
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Figure 5: Comparison between the original image (left) of
the tracked elk and the rendered image (right) according to
the estimated 3–D position for frame numbers 0, 17, 35, 53.

Figure 6: The robot’s scene environment. In the test se-
quence, the robot starts from the left and moves towards
the left elevator button.

For ego–localization a plenoptic model of the scene
shown in Figure 6 has been reconstructed automatically.
During reconstruction knowledge about the scene geometry
has been used. By means of that scene model the task of
the robot was to move from an arbitrary, initially unknown
position in the scene to the elevator buttons between the
left and the middle elevator doors. The robot localized its
position iteratively based on the image data only and taking
into account the odometric information about its last move-
ment. Since the odometry is known as a quite accurate cue
for short but being inaccurate during longer movements it-
erative ego–localization has been performed again using a
particle filter approach similar to [4].

In Figure 7 results of the ego–localization is visualized for
three different time steps. In the left image the trajectory
of the robot and the estimated hypotheses of the robot’s
position is shown (starting with a uniform distribution in the
beginning). The middle image shows the image taken by the
camera, the right one the rendered image based on the best
hypotheses. Using 195 particle every 2 seconds a position
estimate is returned. More details can be found in [10].

7 Conclusion

In this paper we proposed a new type of model for robot
vision applications, so called plenoptic models. The advan-
tage of the approach is that for any object or scene, that
can be recorded with a hand–held camera, such a model can
be reconstructed and new, previously unseen viewpoints can
be selected and respective images can be rendered from the
model.

particles real estimation

Figure 7: An experiment for testing the localization capabil-
ity of our approach when using the robot’s odometry. Left:
schematic top view of the area in front of the wall (gray
area) with the elevator doors (black rectangles). Middle:
real camera view. Right: rendered image at the estimated
most likely position or the robot.

The experimental results of the paper have shown, that
this kind of model is useful as object model in object track-
ing, and as scene model in vision based ego–localization.
Besides these two examples, plenoptic models can also be
used in model learning itself. Thanks to the photorealism,
synthetically generated images can be used as training im-
ages. For example, a statistical model for object recognition
can be trained [9], or a Markov decision processes for active
object recognition [8]. The benefits consist of a reduced ef-
fort for image acquisition, which might be a time consuming
task due to hardware limitations (for example, slow move-
ments of a robot arm and turntable).

The crucial part of the model is the automatic recon-
struction. While it is easy to generate object models, the
reconstruction of scenes depends on the scene itself and the
taken image sequence. Thus, the main focus of our future
work will be on the improvement of the calibration step.
Also, hardware accelerated rendering techniques are neces-
sary for future frame–rate applications.
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