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Object recognition problems in computer vision are often based on single image data pro-
cessing. In various applications this processing can be extended to a complete sequence
of images, usually received passively. In contrast, we propose a method for active object
recognition, where a camera is selectively moved around a considered object. Doing so,
we aim at reliable classification results with a clearly reduced amount of necessary views
by optimizing the camera movement for the access of new viewpoints (viewpoint selec-
tion). Therefore, the optimization criterion is the gain of class discriminative information
when observing the appropriate next image.

We show how to apply an unsupervised reinforcement learning algorithm to that
problem. Specifically, we focus on the modeling of continuous states, continuous actions
and supporting rewards for an optimized recognition. We also present an algorithm for
the sequential fusion of gathered image information and we combine all these components
into a single framework.

The experimental evaluations are split into results for synthetic and real objects with
one- or two-dimensional camera actions, respectively. This allows the systematic evalu-
ation of the theoretical correctness as well as the practical applicability of the proposed
method. Our experiments showed that the proposed combined viewpoint selection and
viewpoint fusion approach is able to significantly improve the recognition rates compared
to passive object recognition with randomly chosen views.

Keywords: Active vision; viewpoint selection; reinforcement learning; sensor data fusion;
optimization.
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1. Introduction

The work introduced in this paper emerges from the fundamental problem of inte-
grating autonomous systems into the human environment in a supporting man-
ner. In particular, we concentrate on robots that are intended to recover arbitrary
objects within an environment. Thus, their main task is to first of all detect and
then classify relevant objects. If decisions on object classes are hard to make, more
views from usually different positions are required.

Today’s prevalent active vision approaches in computer vision that use an active
observer go back to the work of Ref. 1, 4 and others. An overview of work related
to active vision can be found in Ref. 14. In this context, active object recogni-
tion differs from passive object recognition in the sense that a sequence of views
of the same object is not provided randomly. Instead, viewpoint selection tackles
precisely the problem of finding a sequence of optimal views to improve classifica-
tion and localization results by avoiding ambiguous views or by sequentially ruling
out possible object hypotheses. Here, localization refers to the determination of the
rotational pose of the object to the camera, instead of its position in the scene.
Please note that almost any large or extensive series of non-identical image data
of an object would lead the class decision process towards the correct result, inde-
pendent of whether the viewpoints were chosen actively or not. So, optimality in
our problem specification is defined by the demand to simultaneously reduce the
amount of necessary object views and raise the recognition certainty. In general, this
requirement is justified if taking images itself is very costly, like in various industrial
and medical applications. For example, classifying a disease pattern based on X-ray
images should only apply as few views as necessary for the welfare of the patient.
Also, if performing a planned sensor action uses energy from a very limited source,
like in a Mars exploring robot, actions should be well chosen. Please note, that
because of this reason we do not explicitly address the computation time question
for calculating next best views. These thoughts lead to the question of complexity
for such tasks. Important work related to this problem was done by Tsotsos, for
example, in Ref. 40 where it was pointed out that attention is a key element in solv-
ing the complexity problem. Since Ref. 45 proved that such sensor planning tasks
are NP-complete in general, in our work the phrase of optimality itself needs to be
considered as associated with the spent learning effort as well. So, for a growing
experience our solution converges towards the globally optimal one.

1.1. Proposed framework and methods therein

In the given framework, the technical expression viewpoint selection might be con-
fusing since we cannot explicitly declare a predefined pose of the object to be
accessed next. This is due to the fact that the only information we get is the pure
image pixel data when taking a picture. Thus, all we can build up is a single com-
bined discrete-continuous probability density, representing our knowledge about
the considered object’s discrete class and its continuous pose relative to the camera.
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This distribution, which becomes a state in our framework, contains no knowledge
about world coordinates. Accordingly, we do not need to differentiate between mov-
ing the object and moving the camera, apart from the algebraic sign. Of course,
in real world applications, like a robot task, we have to perform initial calibrations
as well as a preceding or integrated object search in the scene. But this part is
omitted in this presentation since it would distract from the original topic, which
is object learning and subsequent recognition. However, a detailed explanation of
active vision for object search can be found in Ref. 44. There, decisively differ-
ent requirements on a camera movement, like the tracking of a spatial relationship
between consecutive images, need to be considered. Additionally, those tasks have
to deal with aspects like occlusion by other items42 or in opposite the exploitation of
those items for finding the deserved object by appearance correlation information.43

Consciously not dealing with these problems we assume to have a perfectly tracked
object right from the start, so we expect to know the rough object position within
the image. So, in particular we do not claim to improve or expand the well-known
idea of active vision itself, but the novelty in this work is the specific acquisition
and exploitation of information about the given objects. Consequently, what we
compute is a relative camera movement — typically on a circle or a hemisphere
around the object — that should bring us to the desired viewpoint if our proba-
bilistic assumption points out the correct state. Thus, the ongoing consideration of
the object pose (rotation relative to the camera) is more of an essential support for
active view planning and object recognition, respectively, rather than an overriding
goal of the proposed methodology.

Though the main goal of our view planning framework (with its states of com-
bined discrete and continuous densities) is to select the best camera action at each
unit of time, there is another very important fusion issue that is also seamlessly
handled in our framework. In particular, the afore-mentioned fusion is that of merg-
ing the classification and localization results of a sequence of viewpoints. This fusion
process is the state adaptation part within our active view planning framework —
so, a problem arises, if how to fuse the collected views to return an inline classi-
fication and localization estimation. In general, a random sequence of views will
improve the recognition rate if a decent fusion scheme is applied. In our framework,
we apply a fusion scheme which is based on the Condensation Algorithm,17 i.e.
we use a particle representation for the state densities. The applicability of such
a fusion method to multimodal distributions over the class and pose space of the
objects has already been shown in Ref. 8. We extend here that work to show that
such a fusion scheme can handle the incoming image information as well as the
camera action in an integrative way.

Active object recognition in our framework is based on a machine learning proce-
dure, namely Reinforcement Learning (RL).38 Multiple sequences of randomly
selected camera movements are performed in a training phase. Prior to this train-
ing process, we also build a model for each object class we want to recognize (see
Sec. 3). Newly gathered image data is used to modify the state probability density
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after each camera action that is performed in this training phase. Consequently,
we learn triples of values, containing (a) a state, (b) camera actions performed
in this state and (c) a resulting reward for that action. A set of meaningful and
unsupervised acquirable rewards will be introduced in Sec. 5.3.

Using the afore-mentioned, established components, like reinforcement learning,
probability densities and Condensation Algorithm, we present a common framework
that combines them into a single working system (see Sec. 2) for active object
recognition. In developing this framework, we enhanced some of the components
to provide abilities that are not inherent to them. These adaptions in conjunction
with the proposed framework of density combination states makes our approach
new and unique. More specifically,

• Our approach introduces a new method for the fusion of the generated views by
applying a recursive density propagation algorithm. There, the fusion method is
not limited to a special classifier, but is sufficiently general to work with almost
all classifiers. This makes it applicable to a very wide range of tasks and supports
the original intention of active view planning: “The importance, however, of this
understanding is that one does not spend time on processing and artificially
improving imperfect data but rather on accepting imperfect, noisy data as a
matter of fact and incorporating it into the overall processing strategy”.3

• The optimal sequence of views is learned automatically in a training step with-
out any user interaction. Therefore, we present different continuous measures
that can directly be calculated out of the state representations during that train-
ing. Usually, the common reinforcement learning just makes use of a discrete
success/failure information after each action step.

• Due to limitations in memory, the traditional reinforcement learning is limited to
a discrete set of reinforcement learning-states — the probability density states in
our case — and discrete actions which can be performed by the camera. We will
show how to utilize those discrete instances for finding an optimal action in a
continuous action space when coming to the evaluation phase. We will, thus, show
how to calculate Kullback–Leibler density distances on the underlying particle
representation. Then we combine those state distances with the difference in
learned and currently possible actions into a common approximation term for
the next best action.

The resulting universal applicability will experimentally be shown in Sec. 6.

1.2. Related work

Active viewpoint selection has been discussed in the past regarding several differ-
ent applications. For example, Refs. 28, 25 and 31 adopt the selection of a next
best view to the task of 3-D object reconstruction. Those algorithms are designed
for reconstructing arbitrary, previously unseen objects, thus omitting any kind of
training phase. In return, viewpoint optimality is influenced by constraints like an
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overlap of object surfaces in consecutive views — a requirement that is dispensable
in object recognition. In Ref. 23, active approaches are also utilized in optimal seg-
mentation of image data. This method is also based on a specially defined objective
function.

Active planning methods have also been used in object recognition itself. For
example, Roy et al.36 planned the next view for a movable camera based on prob-
abilistic reasoning. The active part is the selection of a certain cut of an object
that typically does not fit into the image. Unlike our approach, subsequently taken
images with view planning need an overlap of object cuts — as is normal in object
reconstruction tasks. Dickinson et al. determined distinctive object views before
starting any object recognition.13 The drawback of such methods is that viewpoint
planning is completely independent of the current class probability distribution at
a time step. The algorithm just causes the camera to go for the one, globally best
position. Based on this problem, a more sophisticated planning in Ref. 19 provides
the whole sequence of necessary views for reliable classification by applying a clus-
ter analysis combined with a tree search. Unfortunately, this algorithm is strictly
bounded to discrete sensor positions. It also cannot detect the potential need of pol-
icy changing within a view planning run. In another approach, the work of Ref. 20
uses Bayesian networks to decide on the next view to be taken. This method is lim-
ited to particular recognition algorithms and to certain types of objects, for which
the Bayesian network has been manually constructed. In other words, the approach
cannot be applied without user interaction.

Approaches that completely omit a training phase typically rely on information
theoretic measures, like in Refs. 37 and 10. Here, the optimal action is directly
searched for by maximizing the mutual information between the observation and
the estimation on the object’s class and pose. These techniques are typically vulner-
able to approximation errors when estimating image features at previously unseen
positions. In trying to gain more stable decisions on the next best view, works
like Ref. 21 additionally actively select features that are most likely to support
the information theoretic approach. Overall, the performance of these methods is
weaker than that of learning-based ones. Nevertheless, they have an advantage when
training is inapplicable or too expensive.

Other approaches are more closely related to the one proposed in this paper
as they selectively move a camera for optimized object recognition. Arbel and
Ferrie2 addressed the view planning problem by establishing entropy maps in the
training phase instead of using reinforcement learning. However, object ambigui-
ties are introduced by the fact that the object recognition part is based solely on
object shapes and unlike our method, it does not use the intensity images. Further-
more, in comparison to our work, the inaccuracy in the mobile robot’s movement
is not modeled at all in Ref. 2. In contrast, in the object recognition approach of
Ref. 29, the training is also performed according to reinforcement learning. How-
ever, it omits the detailed declaration of a parametric function approximation for
the objective function concerning the view planning optimization. Instead, this
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is extensively provided in this paper to permit an action search in continuous
space.

1.3. Contents

In Sec. 2, we will give a basic introduction to the interaction of our system compo-
nents, i.e. the object recognition, the data fusion, the viewpoint selection and the
termination decision component. Section 3 shortly introduces the potential feature
extraction methods, namely the well known Principal Component Analysis and a
local Wavelet approach as well as a common statistical enhancement. Sections 4
and 5 describe the new contribution of our work to the task of active object clas-
sification. They present the knowledge representation and data fusion as well as
the adapted reinforcement learning approach for viewpoint selection. The compre-
hensive experimental results in Sec. 6 show that the proposed approach is able to
learn a theoretically optimal strategy for viewpoint selection which records only the
minimal number of images. The improvement in classification results compared to
randomly taken images is highlighted. The paper concludes with a summary and
an outlook to future work in Sec. 7.

2. System Overview

2.1. Components of the view planning system

In our framework, active object recognition is composed of a series of distinct tasks.
The first step to solve the given task of active object recognition is to decide which
individual tasks within our framework are to be treated. As mentioned in Sec. 1,
we tackle the problem by providing a reinforcement learning training first and then
search for the best action in a reinforcement learning evaluation run. Figure 1 shows
the underlying loop which has to be performed multiple times (so-called episodes)
during training and once for each ensuing recognition. It contains four individual
components:

• One component must provide the possibility to perform a basic probabilistic
class and pose estimation of the presented object. So, it first calculates a feature

Fig. 1. Active object recognition divided into several interacting components.
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vector out of the currently acquired image. This is one of the classical problems
in image processing. Here, we decided on two alternative approaches, namely
the Principal Component Analysis based on intensity values and a local Wavelet
feature extraction method which will both be explained in Sec. 3. Note, that
for the PCA, we already need a representative set of object images or feature
vectors, respectively. These are taken from the object model that is built prior
to the training stage (see Sec. 2.2).

We then subsequently match the image features with those features stored
in the model in order to get probabilities of the object class and object pose —
independently of earlier image information. Although our approach can be used
together with almost any object recognition system, we describe the classifiers
used throughout this paper in Sec. 3. This chapter will also present a statistical
extension to the mentioned classifiers.

• As it is necessary in many applications to combine the results of several images
from different viewpoints taken at different time steps, the integration of new
information into the current knowledge about the observed object must be pos-
sible. So, the second system component deals with the fusion of sensor data into
a common probabilistic description of the current object recognition state. The
details of this description and its adaption over time are given in Sec. 4. This
chapter will present a new general framework for fusion in object recognition,
based on the well-established methods of recursive density propagation and the
Condensation Algorithm.

• The termination component determines whether a given goal is reached. In gen-
eral, this termination component depends heavily on the given problem definition,
but in our case, it naturally alludes to the class certainty, which will be introduced
in Sec. 5.3. Of course, in both reinforcement learning training and evaluation, we
additionally have a fixed maximum amount of fusion steps within an episode as
a termination criterion.

• If the problem cannot be solved with the existing information, the viewpoint
selection component must decide from which viewpoint a new image should be
captured. During the evaluation stage, this decision is based on the rewards
gathered during the reinforcement learning training phase. Logically, during the
training itself, this component degenerates to a random action selection. The
essential parts — the adequate mapping of the current situation to the training
experience and the reward definition itself — are explained in Sec. 5. The key
contribution of this part is the use of continuous states and action spaces. It is
important to us that no part of the viewpoint selection module requires the world
to be discretized. In our opinion, today’s state of the art in that field of research
should not depend on such assumptions.

The interaction of the components is shown in Fig. 1. Our system, as described
above, is a “flexible construction kit” that allows for an adaption to special require-
ments. This flexibility is achieved by the possibility to change the realizations of
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each of the blocks with components that may be better suited for a specific task.
For example, the system can be used in any environment, as it is possible to use any
statistical classifier for the “class/pose estimation” component. Another adjustable
element is the reward in the “viewpoint selection” module. It can be adapted to
different goals, like minimum number of views or maximum certainty of the classi-
fication result.

2.2. The underlying object model

As mentioned, before starting the view planning process itself, we need to have a
rough idea of the objects that can possibly appear. Therefore, we initially collect
L images of each object class, ideally equidistantly distributed over all possi-
ble viewpoints. More specifically, we have L = Lh images on a horizontal cir-
cular path around the object for a 1-D representation and L = Lh · Lv images
in case of a hemisphere covering 2-D representation. Subsequently, the model
building itself consists of two steps. First, for each of those images, a feature
vector is calculated according to one of the methods that will be presented in
Sec. 3. Secondly, these feature vectors are stored together according to where
they were taken from, i.e. the position on the circular path or the hemisphere,
respectively.

3. Single Image Class/Pose Estimation

There exists a large number of object recognition methods that are built on some
sort of feature-based representation. Many of these methods differ by the features
used in describing the objects.

3.1. Eigenspace approach

A very popular feature based method is the so-called eigenspace approach based on
Ref. 27, which uses a Karhunen-Loeve Transformation22 (also known as Principal
Components Analysis (PCA)) to obtain a linear system for computing a feature
vector by

c = Φ(f − µf ), Φ ∈ R
Nc×Nf . (1)

The vector f contains all intensities of the Nf pixels of the object image. The
rows of matrix Φ contain the Nc ≤ Nf eigenvectors with the largest eigenvalues
of the covariance matrix of the training images. In particular, for our classification
purpose, we use far less than Nf eigenvectors. Regarding the experiments, the
maximal number of applied eigenvectors will be shown to be Nc = 20. The average
of all training images is denoted as µf . Without loss of generality, we assume that
the average image is subtracted from the object image in advance.
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In Murase’s traditional eigenspace approach,27 a representative set of i images
per class κ is used to calculate reliable PCA feature vectors. In our case, we just
take the L images f i,κ selected according to Sec. 2.2 to calculate a single eigenspace
matrix. Thus, the features ci,κ can be calculated by (1). Since the PCA provides
the most discriminative feature vectors for the given set of input images, it is well
suited to the classification task. Classification and localization of any other image
can finally be done by finding the class and pose in the model representation that
has the most similar feature vector ci,κ: this is the feature vector which minimizes
an Euclidian distance measure

d(c, ci,κ) = ‖c − ci,κ‖2. (2)

3.2. Local wavelet approach

In general, the proposed eigenspace approach applies a global measure for compar-
ing images. So, it works quite well with optimally preprocessed images, i.e. object
transformation within the image should be minimal and background modification
should hardly appear. To overcome this disadvantage — especially regarding our
experiments with objects on cluttered background (see Sec. 6.2) — we alternatively
consider local wavelet features for recognition. In that case, any image is divided
into W ∈ {w1, . . . , wmax} subimages of 8 × 8 pixels each, referred to by fwn . Then,
using a Johnston 8-TAP wavelet,32 a wavelet multiresolution analysis24 with depth
δ = log2 8 = 3 is performed on each subimage. Consequently, the low-pass coeffi-
cient ln,δ as well as the three direction dependent high-pass coefficients hn0,δ, hn1,δ

and hn2,δ can be calculated for the given depth δ and subimage fwn . Combining
the high-pass parts to a common value, we yield several two-dimensional feature
vectors

cn =

(
ln|ln,δ|

ln(|hn0,δ| + |hn1,δ| + |hn2,δ|)

)
(3)

regarding the current subimage index n. So, for image comparison, we separately
need to calculate a feature vector distance for each local fwn and multiplicatively
combine them to a global measure

d(c, ci,κ) =

(
W∏
n=1

d(cn, ci,κn )

) 1
W

(4)

with d(cn, ci,κn ) according to (2).

3.3. Statistical enhancement

In our fusion approach that will be presented in Sec. 4, a classifier is needed that
gives a statistical measure. For that reason, we will shortly present two ways to
extend (2) and (4) to a statistical value.
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3.3.1. Statistical enhancement using exponential distributed distances

An easy and common way to get a statistical measure from a distance is to assume
exponentially distributed distances. This means that the classification leads to a
statistical version

p(c|ci,κ) =
1
µ

exp

(
−d

(
c, ci,κ

)
µ

)
, (5)

where µ > 0 is a parameter of the exponential distribution. The classification and
localization is finally done by finding the class and pose in the training database
that maximizes (5), the Gibbs probability.

3.3.2. Statistical enhancement using normally distributed features

Another statistical approach was presented for the first time in Ref. 15 where ci,κ

is replaced by a normal distribution

p(c|Bi,κ) = N (c|µi,κ,Σi,κ), (6)

where µi,κ denotes the mean vector and Σi,κ the covariance matrix of the resulting
feature vectors when adding noise several times to the same instance of an image
f i,κ. These two components build a statistical model Bi,κ = (µi,κ,Σi,κ) which is
estimated by adding noise and applying small transformations (e.g. translation) to
the training image f i,κ n-times. The result of the noise- and transformation-adding
processes are the new training images f i1,κ, f i2,κ, . . . , f in,κ and the corresponding
feature vectors ci1,κ, ci2,κ, . . . , cin,κ which are used to estimate the mean vector µi,κ

and the covariance matrix Σi,κ. The drawback of this approach is that it is only
able to give localization results for object poses that are in the set of the training
images, indicating that only discrete poses are found. A solution to this problem is
also given in Ref. 15 by providing the following continuous parameterization of the
normal distribution

B(κ, φ) = (µ(κ, φ),Σ(κ, φ)) (7)

where κ describes the discrete class number and φ denotes the continuous pose
parameter. Since it is assumed that a discrete number of normal distributions are
available, classification and pose estimation are done by searching for the discrete
class and continuous pose that maximize (7). The result usually will specify an
object pose that was not in the training database.

4. Fusion of Sensor Data

The fusion expression is used in mainly two different meanings in computer vision
literature. On the one hand, it describes how to deal with different sensor modalities
that are sensing mainly the same section of a scene at a time. To get an overall
impression of a possibly observed object, various methods of intelligent sensor data



June 8, 2009 13:17 WSPC/115-IJPRAI SPI-J068 00735

A Framework for Actively Selecting Viewpoints in Object Recognition 775

combination are then known, reaching from average calculation to selective voting.35

Instead, fusion in this work refers to the sequential integration of different images
acquired by a single modality, i.e. camera intensity images. So, this section discusses
how this problem can be formalized in a statistical framework. First, we would like
to introduce the basic notation used in this paper. In active object recognition, a
series of observed images

〈f〉t = ft, ft−1, . . . , f0 (8)

of an object at different times t is given together with the sequence of camera
movements

〈a〉t−1 = at−1, . . . ,a0 (9)

between these images. Based on these observations of images and movements, one
wants to draw conclusions for a non-observable state sample qt of the object.
This state sample qt must contain both the discrete class Ωκ and the continuous
appearance parameters

φ = (φ1, . . . , φψ)T (10)

of the object, like pose, scaling, internal rotation and so on. This leads to the state
sample definition

qt = (Ωκ, φt1, . . . , φ
t
ψ)T . (11)

In our framework, a state is a collection of probability values that can be calculated
at diverse state samples qt (see also (18)).

Please note that the declaration of the pose parameters of the object has to
be associated and updated with the actual, current camera position. Thus, φ is
always assumed to be time variant. The actions at consist of the relative camera
action with ψ degrees of freedom, at = (∆φt1, . . . ,∆φtψ) with ∆φt = φt+1 − φt.
In order to provide a class and pose estimation for every captured image by the
underlying model, camera actions are restricted to those which leave the camera
on the mentioned circular path or hemisphere, respectively.

In this paper, experimental results will be based upon two appearance parame-
ters at most, namely the vertical and horizontal pose (φ1, φ2) of the object relative
to the camera. These pose parameters will be measured in angle values and deter-
mine the camera position on a hemisphere relative to the object. Since we use the
class and 2-D pose information in the object modeling as well, qt can be directly
mapped to the underlying model.

4.1. Recursive density propagation

A common technique for state estimation which became very popular in the last
years is based on the principle of recursive density propagation which we proposed
in Ref. 6. A main contribution of our work is the adaption of this well-known



June 8, 2009 13:17 WSPC/115-IJPRAI SPI-J068 00735

776 F. Deinzer et al.

approach to the problem of classification and localization of objects with more
than one observed image (as introduced in Sec. 2). In contrast to previous work, we
do not only have a state and an observation (the observed image), but also camera
actions. Additionally, the proposed algorithm is general enough to work with any
classifier besides those introduced in Secs. 3.1 and 3.2, as long as it is able to provide
a probability in the form of (5) or (6), respectively. If we model this problem as a
recursive density propagation, the knowledge on the object state is given in form
of the a posteriori density

p(qt| 〈f〉t , 〈a〉t−1). (12)

This requires having all actions 〈a〉t−1 and observed images 〈f〉t available. For
practical applications, this is not suitable. One would prefer a form that allows for
a continuous integration of new images and actions into the present knowledge.
This is possible with the following recursive formulation of (12) specialized for our
problem with additional camera actions:

p(qt| 〈f〉t , 〈a〉t−1) = p(ft|qt)
∫
p(qt|qt−1, at−1) · p(qt−1| 〈f〉t−1 , 〈a〉t−2)dqt−1. (13)

The detailed algorithm including our task specific constraints and the detailed
derivation of (13) can be found in Ref. 9.

This formulation fulfills our requirements: the integration of a new image ft
and a new action at−1 into the current knowledge about the object given by the
density p(qt−1| 〈f〉t−1 , 〈a〉t−2). A simplified example for one step of such a density
propagation considering the cups in Fig. 4 is shown in Fig. 2. This figure shows the
components for one fusion step:

(1) a posteriori distribution for qt−1

(2) state transition with movement inaccuracy modeling
(3) a priori distribution for qt
(4) integration of knowledge p(ft|qt) leading to a posteriori distribution for qt.

One can calculate the feature vector of ft using (1) or (3) and approximate the
feature vector for each qt via the underlying model. Then p(ft|qt) can be computed
via (5) or (6).

The recursion of (13) bottoms out at the initial state probability distribution
p(q0). This distribution contains the initial knowledge about the object and its pose.
If no a priori knowledge is available, p(q0) is assumed to be uniformly distributed
over the state space. The only assumption we make within this framework is the
permanence of the considered object during the classification process. So, to classify
an object with class q1 = Ωκ in a sequence of T images, we postulate

q1,t = q1,t−1 = · · · = q1,t−T+1. (14)

If the problem is reduced to discrete pose parameters in qt, the integral in (13)
could easily be evaluated in an analytical way. But we are interested in the fusion
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Fig. 2. Illustration of the single tasks necessary for the density propagation for one new view.
Each plot line shows the probability of a continuous pose φ1 given a discrete class Ωκ.

of multiple views in a general way with the possibility of continuous pose parame-
ters. This means that we have to develop extended methodologies for handling the
continuous densities in a nonparametric way.

4.2. Fusion using particle filters

The classic approach for solving a recursive density propagation problem as given
above is the Kalman Filter.18 But in computer vision, the necessary assumption
for the Kalman Filter, p(ft|qt) being normally distributed, is often not valid due to
object ambiguities, sensor noise, occlusion, etc.

One approach for the complicated handling of such nonanalytical and addition-
ally combined discrete and continuous densities are the so-called particle filters.17

The basic idea is to approximate a posteriori density by a set of weighted sam-
ples. In our approach, we use the Condensation Algorithm17 which uses a sample
set Yt = {y1

t , . . . , y
M
t } at time step t to approximate the multimodal probability

distribution (12) by M samples yit = {xit, pit}. Each sample y consists of the point
x = (Ωκ, φ1, . . . , φψ) within the state space and the weight p for that sample with
the condition that

∑
i p
i
t = 1. Please note the identical declarations of q and x.

The only difference is that x is a state hypothesis that is actually represented
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by a particle, whereas q should be seen as an arbitrary position within the state
space.

The sample set only represents the density (12). An algorithm that allows for
the use of sample sets in recursive density propagation problems is the Condensa-
tion Algorithm.17 It starts with an initial sample set Y0 representing p(q0). In our
application, we distribute the samples uniformly over the state space as we will have
no prior knowledge about the objects before observing them for the first image.

For the generation of a new sample set Yt, M new samples yit are:

(1) drawn from Yt−1 with a probability proportional to the sample weighting;
(2) propagated with a necessarily predetermined sample transition model according

to p(qt|qt−1,at−1) in (13). In this work, we assume the sample transition to be

xit = xit−1 + (0, ui1, . . . , u
i
ψ)T with uij ∼ N (∆φtj , σj). (15)

Equation (15) models the inaccuracy of the camera movement under the
assumption that the former is independent of the movement components. The
variance parameters σj of the Gaussian transition noise have to be defined in
advance (see Sec. 6). Since the error in transition is supposed to be unbiased
and symmetric, modeling noise with a Gaussian distribution is reasonable. It
is important to note that the uncertainty modeled by the sample transition is
external, i.e. the inaccuracy of the camera movement, and not internal, i.e. the
state estimation itself, as it is usually the case for particle filter applications.

(3) evaluated in the image by p(ft|xit). This evaluation is performed by the clas-
sifier. The only requirement for the classifier that shall be used together with
our fusion approach is its probabilistic expandability in order to evaluate this
density. In this work, we use a classifier based on the continuous statistical
eigenspace approach as presented in Ref. 15. In related previous work,16,33 we
have shown that other classifiers, like the Wavelet classifier, can also be used
in the presented fusion approach.

Given a collection of Yt samples, a classification is possible at each time step
via marginalization over all possible poses for each class. This can be done in our
setup by a simple summation

p(Ωκ) =
∫
φ

p((Ωκ, φ1, . . . , φψ)T|ft, at−1, . . .) dφ =
∑

(i|(xit)1=Ωκ)
pit. (16)

At this point, we want to note that it is important to include the class Ωκ
in the object state qt and the samples yit. An alternative would be to omit this
by setting up several sample sets — one for each object class — and perform the
Condensation Algorithm separately on each set. But this would not result in an
integrated classification/localization.
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4.3. Evaluation of particle filter densities

In the context of the viewpoint selection (see Sec. 5), the densities which are repre-
sented by sample sets have to be evaluable at any continuous position. The direct
evaluation of them beyond the positions given by the individual samples is not pos-
sible. So it is necessary to find a continuous representation of them. A common way
to evaluate non-parametric densities is the Parzen estimation30 which is calculated
for the sample set Y by

p(qt| 〈f〉t , 〈a〉t−1) ≈ p̃Y
(
qt| 〈f〉t , 〈a〉t−1

)
=

1
MY

MY∑
i=1

g0(qt − xit), (17)

with g0(v) = N (v|µ = 0,Σ) being a zero-mean normal distribution which denotes
the window function. The choice of the mean vector µ = 0 follows from the fact that
the difference (qt−xit) in (17) results in zero-mean data. In contrast, the definition
of the covariance matrix requires a careful consideration of methods like the mean
minimal distance of samples5 or the entropy-based approach of Ref. 41. Since the
latter includes a complex, time consuming optimization method, we applied the
approach of in Ref. 5. For a more detailed explanation on the theoretical background
of the approximation of (13) by a sample set, we refer to Ref. 17.

In Ref. 6, we discussed the use of probability density trees to evaluate the
density. But results have shown that the quality of the approximation generated by
the probability density trees is not sufficient for our purpose. The major advantage
of density trees would be that they show a significantly lower memory consumption.

5. Viewpoint Selection

A straight forward and intuitive way to formalizing the problem of viewpoint selec-
tion is given in Fig. 3 which shows the basic loop performed in reinforcement learn-
ing. A continuous alternation between sensing st and action at can be seen. The
chosen action at corresponds to the executed camera movement as described in
Sec. 4, the sensed state (introduced in Sec. 1)

st = p(qt| 〈f〉t , 〈a〉t−1) (18)

is the density as given in (12). Additionally, the classification module returns a
so-called reward rt, which measures the quality of the chosen action with respect to

Fig. 3. Interaction between the environment and the reinforcement learning agent.
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the resulting viewpoint. The definition of the reward is an important aspect as this
reward shall model the goal that has to be reached. So, proper definitions for the
reward in the context of our viewpoint selection problem are another crucial contri-
bution of this work. Particular emphasis was given to measures that can be directly
extracted from an available state density st, thus satisfying the requirements of
unsupervised learning. Details on the rewards are given in Sec. 5.3.

5.1. Reinforcement learning

The goal at time t during the evaluation phase of a reinforcement learning process
is to maximize the accumulated and weighted future rewards, called the return

Rt =
∞∑
n=0

γnrt+n+1 with γ ∈ [0; 1]. (19)

The weight γ defines how much influence a future reward will have on the overall
return Rt at time t + n + 1. A value of γ = 0.0 would mean that the return
depends only on the reward of the next step. In contrast, γ = 1.0 would mean that
all following rewards have the same influence on the return. Of course, the future
rewards cannot be observed at time step t. Thus, the following function, called the
action-value function

Q (s,a) = E {Rt|st = s,at = a} (20)

is defined. It describes the expected return when starting at time step t in state
s with action a. In other words, the function Q (s,a) models the expected qual-
ity of the chosen camera movement a for the future, if the viewpoint fusion has
constructed state s so far.

Viewpoint selection can now be defined as a two-step approach: First, estimate
the function Q (s,a) during training. Second, if at any time the viewpoint fusion
returns s as classification result, select that camera movement which maximizes the
expected accumulated and weighted rewards. This function is called the policy

π(s) = argmax
a

Q (s,a) . (21)

The key issue of course is the estimation of the function Q (s,a), which is the basis
for the decision process in (21). One of the demands defined in Sec. 1 is that the
selection of the most promising view should be learned without user interaction.
Reinforcement learning provides many different algorithms to estimate the action
value function based on a trial and error method. Details about the learning meth-
ods can be found in Ref. 38 for the general case and in Ref. 8 for our specific
viewpoint selection problem.

5.2. Continuous state and action spaces

Most of the algorithms in reinforcement learning treat the states and actions as
discrete variables. Of course, in our viewpoint, selection framework parts of the
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state space (the pose of the object) and the action space (the camera movements)
are continuous. For that reason, the common reinforcement learning techniques
cannot be directly applied to our viewpoint selection framework. It is necessary to
find a way to allow for the usage of the required continuous states and actions.
So, next to the adapted fusion process and the preparation of adequate reward
definitions, this is a central aspect of our work.

We propose the extension of the algorithms presented in Ref. 38 to continuous
reinforcement learning by approximating the action-value function as follows:

Q̂ (s,a) =

∑
(skt ,a

k
t )
K(d(θ(s,a), θ(skt ,a

k
t ))) ·Q

(
skt , a

k
t

)∑
(skt ,a

k
t )
K(d(θ(s,a), θ(skt ,akt )))

, (22)

where θ(s,a) is a transformation function (see next subsection). The other com-
ponents within (22) are the distance function d(·, ·) and a kernel function K(·).
Equation (22) can be evaluated for any continuous state/action pair (s,a). Basi-
cally, this is a weighted sum of the action-values Q

(
skt ,a

k
t

)
of all the state/action

pairs (skt ,a
k
t ) which were collected during all previous training episodes k.

Finally, the viewpoint selection problem of finding the optimal action a∗, i.e. the
computation of the policy π, can now be written, according to (21), as an optimiza-
tion problem

π(s) = a∗ = argmax
a

Q̂ (s,a) . (23)

It is solved in this work by applying a global Adaptive Random Search Algorithm
followed by a local Simplex.39

5.2.1. Transformation function

The transformation function θ(s,a) transforms a state s with a known action a to
a new state with the intention of bringing a state to a “reference point” (required
for the distance function in the next item). In the context of the current definition
of the state from (18) it can be seen as a density transformation

θ(st,at) = θ(p(qt| 〈f〉t , 〈a〉t−1), at) = det(Jζat (qt))p(ζat(qt)| 〈f〉t , 〈a〉t−1)) (24)

with

ζa(q) = (q1, q2 − a1, . . . , qψ+1 − aψ)T (25)

and the Jacobian matrix

Jζa(q) =


∂(ζa)1
∂q1

. . .
∂(ζa)ψ+1
∂q1

...
. . .

...
∂(ζa)1
∂qψ+1

. . .
∂(ζa)ψ+1
∂qψ+1

 =

1 0
. . .

0 1

 . (26)

The density transformation simply performs a shift of the density.
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5.2.2. Distance function

The distance function is used to calculate the distance between two states. Generally
speaking, similar states must result in low distances. The lower the distance, the
more transferable is the information from a learned action-value to the current
situation. As the transformation function (24) results in a density, the Kullback–
Leibler Distance

dKL(st, s′t′) = dKL

(
p(qt| 〈f〉t , 〈a〉t−1), p(qt′ | 〈f ′〉t′ , 〈a′〉t′−1)

)
= E

{
log

p(qt| 〈f〉t , 〈a〉t−1)
p(qt′ | 〈f ′〉t′ , 〈a′〉t′−1)

}
(27)

=
∫
p(qt| 〈f〉t , 〈a〉t−1) log

p(qt| 〈f〉t , 〈a〉t−1)
p(qt′ | 〈f ′〉t′ , 〈a′〉t′−1)

dq , (28)

is an appropriate distance metric. In our method, we use its symmetric distance
measure extension, the so-called extended Kullback–Leibler Distance

dEKL(st, s′t′) = dKL(st, s′t′) + dKL(s′t′ , st). (29)

Please note that, in general, there is no analytic solution for (29). However, since we
represent our densities as sample sets anyway (see Sec. 4) there are well-known ways
to approximate (29) by Monte Carlo techniques using the Parzen estimation (17).
Calculating the Kullback–Leiber Distance using (28) is numerically too costly, so it
is preferable to approximate the expectation in (27). As Ref. 41 showed, this can be
done by drawingMbY samples from (17), setting up a new sample set ŷ1, ŷ2, . . . , ŷM bY

with particles ŷi = {x̂i, p̂i} analog to the definition of particle sets in Sec. 4.2. For
MbY → ∞ the expectation (27) in combination with the Parzen estimation (17)
converges to the real Kullback–Leibler-Distance:

E
{

log
p(qt| 〈f〉t , 〈a〉t−1)

p(qt′ | 〈f ′〉t′ , 〈a′〉t′−1)

}
=

1
MbY

M bY∑
i=1

log
p̃bY

(
x̂i|ft,at−1, ft−1, . . .

)
p̃bY

(
x̂i|f ′t′ , a′

t′−1, f
′
t′−1, . . .

) . (30)

Again, we need to calculate (30) twice with a switch of densities to get the symmetric
measure (29).

5.2.3. Kernel function

The kernel function K(·) weighs the calculated distances. A suitable kernel function
is the Gaussian

K(x) = exp
(
− x2

D2

)
(31)

because it transfers the distance values into similarity values and at the same time,
creates less influence on those densities with a low similarity, regarding (22). In (31),
D denotes the width of the kernel. Low values for D will result in very detailed
approximations well suited if a lot of action-values Q (s′, a′) are available. If the



June 8, 2009 13:17 WSPC/115-IJPRAI SPI-J068 00735

A Framework for Actively Selecting Viewpoints in Object Recognition 783

system has so far observed only very few action-values, high values for D are the
better choice as they give smoother approximations. If one wants to be conservative
with this parameter, a potential larger value for D is favorable.

5.3. Reward definition

As mentioned above, the proper definition of the reward rt is a key point in our
viewpoint selection and reinforcement learning. In our context, four different defi-
nitions of rewards are reasonable.

5.3.1. Inter-class distance

The simplest reward definition which we have looked into over time7,34 is the inter-
class distance between the two best class hypotheses. In other words, we define a
viewpoint to be useful if the difference of the quality measure between the best
and second best object hypotheses is large. This definition is a reasonable reward
which has shown very good results for simple planning problems.7,34 This inter-
class distance does not require a statistical upgrading of the feature distance to the
classifier (see Sec. 3.3). In fact, it is possible to use this measure in combination with
any arbitrary classifier as long as the latter delivers some kind of sensible distances
representing object similarities.7

5.3.2. Fixed end-value

Another way to rate camera movements is to define a reward that has a value of 0
except when reaching the terminal state:

rt =

{
C > 0 : st is terminal state

0 : otherwise
(32)

The advantage of (32) is that it maximizes the return of an episode with short
episodes (at least for γ 
= 0, γ 
= 1). So this strategy promises to look for episodes
with only a minimal number of views. The user has to decide beforehand when
the confidence of the classification is high enough. As a result, an episode with a
merely sufficient information gain will get the same reward as an episode collecting
even more class discriminative information. So this strategy does not necessarily
maximally increase the class certainty at each time step.

5.3.3. Entropy

The third approach follows the idea that viewpoints which increase the information
observed so far should have large values for the reward. A well-known measure for
expressing the information content that fits our requirements is entropy

rt = −H(st) = −H(p(qt| 〈f〉t , 〈a〉t−1)). (33)



June 8, 2009 13:17 WSPC/115-IJPRAI SPI-J068 00735

784 F. Deinzer et al.

In that sense, the reward expresses the gain of knowledge about the object. Please
note that since we work in an unsupervised manner regarding class and pose estima-
tion, a relatively definite but incorrect state representation would also gain a high
entropy based reward. This fact will be of interest in Sec. 6.2. Equation (33) has
the advantage that the goal is to improve the classification besides only trying to
reach a stop criterion. There are two approaches for the calculation of the entropy
in (33):

H(p(qt| 〈f〉t , 〈a〉t−1)) = E
{− log(p(qt| 〈f〉t , 〈a〉t−1))

}
(34)

= −
∫ +∞

−∞
p(qt| 〈f〉t , 〈a〉t−1) log p(qt| 〈f〉t , 〈a〉t−1)dqt .(35)

As the real density (12) is not available, one has to use the Monte Carlo summation
with Parzen estimation (17) once more. Regarding the definition of the sample set,
one obtains:

E
{− log

(
p(qt| 〈f〉t , 〈a〉t−1)

)}
= − 1

MbY

M bY∑
i=1

log p̂i. (36)

For MbY → ∞ the expectation (34) converges to the real entropy.

5.3.4. Class certainty

A reward measure that is very much aligned to our proposed class probability func-
tion (16) is the class certainty. Thereby a resulting density distribution is assessed
to be of high significance if the summarized probability over all object poses of the
most probable class is high as well:

rt = max
i

∫
φ

p(qit| 〈f〉t , 〈a〉t−1) dq
i with qi = (Ωκ=i, φ1, . . . , φψ)T . (37)

Consequently, given k classes, rewards in our approach obey the relation k−1 ≤ rt ≤
1 since this is the range of possible probabilities for the most probable class at each
time step. So this reward measure relies on the absolute summarized probability
of the most probable class rather than on relative probabilities like in the case
of the inter-class distance measure. Please note, that in a final, non-probabilistic
classification decision, we decide for the absolutely best class instead of evaluating
any class distances.

In contrast to the entropy measure, the compromise to be accepted with the
class certainty criteria is its disregard of any accuracy concerning the assumption
of the object pose.

5.3.5. Cost of actions

It is worth noting that the reward might also include costs for the camera movement,
so that large movements of the camera are punished. In this paper, we neglect costs
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for camera movement for the time being. But work in this area has been done, for
example, in Ref. 11.

6. Experimental Results

The goal of our proposed framework of active object recognition is reliable object
classification with a reduced amount of necessary view. This means that either we
should be able to reduce the number of sensor movements needed to achieve a
reliable classification rate to the optimal minimum, or we should obtain improved
classification results after the same number of views are compared to an unplanned
proceeding. For evaluating the presented approach, we arranged the following three
different kinds of experimental setups for showing the theoretical correctness as well
as the practical applicability of our approach.

6.1. Simply structured objects with 1-D planning

6.1.1. Theoretical considerations

For our 1-D setup, the task is to differentiate between the four classes of synthet-
ically generated cups shown in Fig. 4. Those are marked by an A or a B on the
one side and a 1 or a 2 on the opposite side. Please note, that these objects were
designed to exclude a reliable classification by just one view as well as to provide
several positions of ambiguity. In general, all letters and numbers are at least par-
tially visible within a horizontal range of 150◦ around their centers at 90◦ and 270◦,
respectively. For this basic setup, we just consider a 1-D camera movement on a cir-
cular path around the object. Furthermore, assuming arbitrary starting positions,
an averaged theoretical minimum of 2.16̄ necessary views for a reliable classification
can be calculated:

• Assuming the mentioned 150◦ of visibility of the imprints, the chance for getting
some class information with the first random view is 83.3̄%.

90° 0°/360°180° 270°

class

range

1

3

2

4

90o 270o

0o

Fig. 4. Views of the set of synthetic object classes.
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• Optimal planning needs two information containing views at most for reliable
classification, thus three views are the theoretical minimum if the first one is
redundant, two otherwise.

The minimum of 2.16̄ views implies the assumption that the visibility of an
imprint is equal to its recognizability. Given small areas where this assumption
fails, the theoretical minimum has to be slightly raised.

6.1.2. Practical evaluation

For comparing the performance of our approach to this minimum, we first built an
underlying model. It contains the statistically enhanced Nc = 10 eigenfeatures for
each of 360 equidistantly distributed images of every object class. The corresponding
feature extraction and statistical adjustment are computed as shown in Secs. 3.1
and (6), respectively.

Based on this model, NR = 10 reinforcement learning training episodes com-
posed of Tmax = 8 time steps each were performed for every class in the database.
Within each of those steps, a randomized virtual camera movement is carried out,
resulting in a next view and a subsequent feature extraction. For compensating a
possible movement inaccuracy, σ1 in (15) was chosen to be 1◦, since this value exper-
imentally appeared to be adequate for a complete parameter range of 360◦. After
fusing the gathered information as described in Sec. 4, we use the entropy based
reward (33) for rating the prior movement and iteratively building up the knowl-
edge base during training. For representing the underlying densities, we provided
M = 1440 particles altogether. This way, we initially cover each pose hypothesis of
all four classes in equidistant steps of 1◦. This amount of particles was empirically
found to be large enough for a reliable state representation and small enough for a
fast calculation of the Condensation Algorithm (see Sec. 4.2).

Additionally, we performed three independent training phases for evaluating the
influence of three variations of the weighting γ in (19), representing the extremes of
a single step approach (γ = 0) and the one independent of the sequential appearance
of rewards within an episode (γ = 1). γ = 0.5 is supposed to represent all settings
between those two extremes.

Our evaluation phase consisted of 250 episodes for each class. The goal was
to proceed greedily. So given an arbitrary starting position, the policy (23) had
to be computed in every single step in order to reduce the amount of necessary
views for reliable classification. Experiments were repeated for some variations of
Dε{2, 5, 10, 20, 50} in (31) since this is a crucial parameter when deciding on the
similarity of states. Finally, Table 1 shows the results with the last column repre-
senting the averaged number of views µV P that had to be taken before reaching the
preset stopping criterion of 90% class certainty, according to (37). Please note that
the extremely high classification results gained after t fused steps are not unex-
pected since we have a fairly simple classification problem here, if not confronted
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Table 1. Classification results [%] for the 1-D synthetic dataset (see Fig. 4) after t planned
views based on NR = 10 training episodes per class. The first eight columns show the results
depending on a pair of parameters (γ, D) whereas the last column displays the averaged number
of necessary views µV P for reaching the stopping criterion.

NR = 10

t = 1 2 3 4 5 6 7 8 µV P

Unplanned 48.5 59.7 71.6 81.4 91.2 94.0 96.1 96.5 3.53

γ = 0
2 46.6 92.4 99.5 99.9 99.9 99.7 99.9 99.9 2.22
5 49.8 92.5 99.3 99.6 99.7 99.7 99.7 99.6 2.25

D =10 48.1 94.4 99.7 99.8 100 99.8 99.9 99.9 2.20
20 48.0 94.1 99.7 99.7 99.7 99.7 99.7 99.7 2.20
50 47.3 93.1 99.9 100 100 100 100 100 2.22

γ = 0.5
2 45.3 92.1 99.7 99.9 99.9 99.9 99.9 99.9 2.23
5 47.8 93.7 99.8 99.8 99.8 99.8 99.8 99.8 2.23

D =10 46.6 93.3 99.4 99.7 99.8 99.9 99.9 99.9 2.23
20 47.9 92.3 99.6 99.6 99.7 99.9 99.9 99.9 2.25
50 45.7 94.2 99.5 99.6 99.8 99.9 99.9 99.9 2.22

γ = 1
2 47.8 92.9 99.4 99.6 99.8 99.9 99.9 99.9 2.23
5 47.8 91.6 99.6 99.6 99.7 99.8 99.9 99.9 2.27

D =10 45.2 92.9 99.7 99.9 99.9 99.9 99.9 99.9 2.26
20 44.6 93.4 99.5 99.8 99.9 99.9 99.8 99.8 2.26
50 46.7 93.0 99.5 99.7 99.6 99.7 99.7 99.7 2.25

with an ambiguity. The values for t = 1 are the single image classification results
without any information fusion. They differ among the rows of Table 1 since we
permitted random starting views in each episode of the reinforcement learning eval-
uation phase.

Considering the entries for reasonable values of γ = 0 and γ = 0.5, we concluded
that we never need more than 1.04 times the number of views of the theoretical
minimum. Regarding a single episode, the worst appearing episode with this coop-
erative objects showed a number of µV P max = 4 necessary views. In comparison,
in the unplanned proceeding, we got 22 out of the 1000 episodes that were not
able to provide a reliable classification even after µV P max = 8 views. An asset of
our framework is that for achieving those rates, we only had to perform NR = 10
episodes for each object class during training. Figure 5 shows in greater detail
the development of µV P when even boosting the amount of training episodes. It
contains three graphs representing the various values of γ. Results of µV P are
averaged over all discrete D ε {2, 5, 10, 20, 50} and plotted against the training
complexity NR.

As expected, more extensive training provides higher potential of reducing nec-
essary views. But given the theoretical minimum as a value of convergence, at some
point, the additional training effort is not profitable any more.
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Fig. 5. Development of the number of necessary views µV P for a reliable classification depending
on the amount of underlying training episodes NR. The bottom line represents the theoretical
minimum.

To provide a further insight on the influence of the kernel width D to the gained
results, Table 2 shows the entries similar to Table 1 for extreme values of D and
γ = 0. As can be seen, we obtain partially better results than for the unplanned
proceeding even if D has extremely small or big values, although performance is not
optimal in those cases. But since the decline of classification performance regarding
D is quite flat, our approach is supposed to work optimally for a wide range of
kernel widths with this dataset.

6.2. Task specific objects with 2-D planning

Since the above results indicate that the suggested approach works as expected,
we now consider real, but still task oriented objects and extend the possible view-
points to be located on a hemisphere around them (see Fig. 7). Object classes are
represented by the four variants of toy manikins shown in Fig. 6, either carrying a
quiver, a lamp, both, or none of these equipments. We selected those items because
they are hard to classify from quite a wide range of views.

For offline computation we chose steps of 1.125 degrees in vertical as well as in
horizontal direction to gain a fundamental image set of 81 × 320 = 25920 entries
per class. Taking every other image and calculating its features [see Eq. (1)], we

Table 2. Classification results [%] for the 1-D synthetic dataset (see Fig. 4)
adequate to Table 1, but with extreme values for D.

NR = 10

t = 1 2 3 4 5 6 7 8 µV P

γ = 0

D =

0.02 47.5 56.2 61.4 66.1 68.1 72.1 74.7 75.7 6.82
0.05 41.8 76.3 83.2 87.6 89.4 92.1 93.1 93.8 3.83
500 46.1 82.2 95.0 95.6 96.4 96.6 96.6 96.8 3.70
1000 45.0 79.9 93.2 93.2 93.6 93.2 93.3 93.4 3.76
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1

4

3

2

Fig. 6. Views of the non-synthetic object classes.

Fig. 7. Description of possible camera positions on a hemisphere around the object.

can construct the underlying model according to Sec. 3.1. This time, we made use
of Gibbs formula as a statistical adjustment (5) for calculating the class and pose
probabilities.

Given the classifier model, we now take the other half of all taken images for
the purpose of the reinforcement learning based training phase as well as for the
ensuing evaluation phase. This way, we avoid getting wrongly conditioned results by
working on images already appearing in the model representation. Unfortunately,
this time we can hardly provide a theoretical minimum number of views essential
for classification at this problem. So, here, success is best judged by a comparison
of classification results between planned and random camera movement. Since our
method is placing less emphasis on high classification results in general, but rather
focuses on proper view planning, we added a Gaussian noise to all images recorded
during training and evaluation. This is required since the underlying classifier itself
might be far too good to leave some space for remarkable enhancements in classifi-
cation results by the view planning. Please note that our approach is nevertheless
not ill-posed because of this fact since it works with any classifier able to evaluate
a density, as mentioned in Sec. 4.2.

During the reinforcement learning training phase, for each class in the database,
we now provide 25 episodes of randomly chosen sensor actions and resulting images
to the algorithm, due to the higher dimensionality in space. For particle transi-
tion (see (15)), we again set σ1 = σ2 = 1◦. Each episode contains eight steps of
image retrieval and consecutive information fusion at most, with the termination
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criterion of at least 90% classification certainty. Further planning is supposed to
be superfluous and the episode is terminated accordingly. Please note that with
the added noise, we rarely reached a certainty of 90% based on the acquired eight
images. Consequently, a comparison of µV P for planned and unplanned episodes is
not meaningful with this dataset and will be omitted.

Thus, up to seven random actions per episode are rated according to the prob-
ability density distribution calculated in each step. Handling the 2-D space, the
density representation depends on M = 6720 particles altogether, that is 1680
particles per class.

In order to show the robustness of the introduced algorithm again, several tests
where performed varying some of the essential parameters. We first chose two dif-
ferent values for the number of eigenvectors Nc ε {5, 20}, making up the feature
space. Five eigenvectors provided quite reliable classification results, whereas using
more than twenty does not lead to noticeable enhancements anymore. Additionally,
we again tested the three variations of the weighting γ ε {0, 0.5, 1} and the various
common kernel parametersD ε {2, 5, 10, 20, 50}. Table 3 lists the corresponding clas-
sification results in each step, compared to those generated by unplanned sensor
action. For the evaluation of the unplanned sequences, we considered 250 episodes
per class in order to provide solid reference values. Results of the planned sequences
were then computed relying on another 250 episodes for each parameter combina-
tion and object class.

Offensive environment: Please note that for determining the reinforcement learn-
ing reward in these experiments, we now used the class certainty (37). This appears
to be suboptimal in a first instance since it noticeably differs from the entropy
based reward (33) which is a well-known measurement for information content in a
state. But our decision was forced by the fact that the chosen dataset is vulnerable
to a heavy misclassification when approaching a particular, quite small range of
viewpoints. Of course, misclassification is something we have to deal with, but in
that case from those positions a wrong class is slightly more probable than in any
other sensor position. So the entropy measure would prefer those harmful positions
in usually all following timesteps. As we work in an unsupervised manner concern-
ing the object class assumption, classification rates would extremely drop within
an episode. We showed the entropy reward to work well with other datasets,12 but
in general, we cannot assume to have an inoffensive environment. So, for being able
to raise the classification rate iteratively, a change to (37) was fundamental as well
as meaningful, since it must conform to the classification measurement established
in (16). For comparison purposes, the classification results using 33 instead of 37
are shown in Table 4.

Taking a look at the results, our choice of reward as well as the complete view
planning approach is justified since we almost universally get higher classification
rates compared to performing arbitrary sensor movements. Especially early steps
within an episode (t = 2, 3) partially gain a benefit of more than 10% in class
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Table 3. Classification results [%] for the 2-D dataset after t planned views compared to an
unplanned proceeding. Evaluation was done using Nc = 5, 20 eigenvectors. Bold numerical values
highlight the ten highest gains in classification rate within the particular table.

Nc = 5 t = 1 2 3 4 5 6 7 8

Unplanned 44.3 64.8 78.6 85.3 89.2 90.4 91.8 93.1

γ = 0
2 43.9 76.9 87.6 92.2 94.7 95.7 96.2 96.6
5 46.4 78.3 90.4 93.2 95.3 96.7 97.3 97.7

D = 10 42.9 77.3 88.8 91.8 92.8 93.9 94.7 95.2
20 46.1 76.2 89.1 92.8 93.8 95.6 95.9 95.4
50 43.4 72.0 84.6 89.7 91.7 93.4 94.8 95.1

γ = 0.5
2 42.8 73.6 87.8 94.0 95.1 95.9 96.5 97.0
5 40.6 74.7 88.1 89.9 92.1 93.3 93.7 94.6

D = 10 43.3 76.9 85.3 87.4 86.9 87.0 88.2 88.3
20 46.8 71.2 85.0 87.5 89.3 91.1 92.1 92.6
50 42.3 67.2 78.7 82.7 84.3 87.3 88.6 90.5

γ = 1
2 41.9 68.7 81.3 87.9 91.4 94.4 95.7 96.5
5 44.2 67.9 80.0 85.1 87.9 89.8 91.6 92.3

D = 10 45.1 70.2 80.4 83.8 86.6 88.5 90.4 91.9
20 46.5 66.4 78.9 84.8 88.4 91.7 92.1 92.6
50 43.1 64.3 71.5 78.1 80.8 83.5 86.3 88.0

Nc = 20 t = 1 2 3 4 5 6 7 8

Unplanned 44.7 66.2 76.3 82.7 87.8 89.3 90.5 91.7

γ = 0
2 45.3 74.1 87.3 92.1 93.8 95.2 95.9 95.6
5 43.1 78.5 89.3 94.0 95.1 95.9 95.6 95.8

D =10 43.5 76.1 87.0 89.8 90.2 90.7 91.4 91.5
20 44.8 77.3 90.3 92.6 94.1 94.1 94.7 94.7
50 42.0 69.9 85.4 89.5 91.5 93.2 94.2 95.0

γ = 0.5
2 47.9 73.7 87.7 92.1 94.7 94.7 95.9 97.0
5 42.5 76.7 86.9 90.9 92.5 93.6 93.4 94.0

D =10 44.7 77.4 88.5 90.9 92.4 94.0 94.1 94.2
20 41.6 73.6 86.9 90.5 91.9 93.4 94.0 94.0
50 41.9 69.7 82.5 86.6 89.2 88.9 90.6 91.5

γ = 1
2 43.3 67.9 80.1 86.3 90.6 93.1 95.3 96.0
5 43.8 68.2 79.0 85.0 88.2 90.7 92.1 93.8

D =10 44.5 68.3 79.8 86.0 87.7 88.8 90.7 92.2
20 42.9 64.9 74.4 81.3 85.6 87.7 89.7 91.7
50 41.8 66.5 77.2 82.8 86.9 88.9 89.8 89.8
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Table 4. Classification results [%] for the non-synthetic dataset after t
planned views. The reinforcement learning reward is based on the entropy
of the state probability density (33).

Nc = 5 t = 1 2 3 4 5 6 7 8

Unplanned 44.3 64.8 78.6 85.3 89.2 90.4 91.8 93.1

γ = 0

D =
10 43.4 78.0 85.3 86.5 80.7 74.7 71.2 69.8
20 42.5 76.8 86.1 85.4 79.4 74.9 71.5 70.6

certainty. Regarding the results printed in bold—symbolizing the highest gains in
classification—it is worth noting that none of them are in the fields of γ = 1. Thus,
the time sequence of rewards within an episode emerges to be an extremely impor-
tant factor when building the return (19). As one would expect, there is no value
in rating a current action with the averaged sum of the immediate and any follow-
ing reward. This should only be considered if episodes are quite long and training
actions are performed randomly. Furthermore, it is observable that high values for
the kernel parameter D tend to result in lower classification results. Especially for
D = 50, we do not get any noticeable enhancement compared to a random proceed-
ing. The reason is that such wide kernels do not support the formation of a very
structured action-value function. Possibly learned optimal actions are devaluated by
their rewards’ superposition of many other rewards of quite dissimilar state-action
combinations. On the other hand, extremely low kernel parameters, like D = 2,
hardly suffer any loss in classification rate. The optimization algorithm is able to
avoid getting stuck in a local minimum of the more detailed approximation of (22).
Additionally, we can postulate that using a higher dimensional feature space trans-
formation with Nc = 20 instead of five eigenvectors does not systematically lead to
an improvement in classification results.

Unfortunately, sometimes the benefit of planning disappears when looking at
the later steps of an episode. A clear example of this phenomenon is represented
by the line in Table 3, that shows the results for Nc = 5, γ = 0.5 and D = 10.
Here, for t > 4 the classification results for the random proceeding outperform the
planned ones.

6.3. Real world objects with heterogeneous background

So far, we have concentrated on objects that show real ambiguities, where even
high quality images of certain object views cannot provide enough information for
reliable object class decision. We claimed that in those environments, the idea of
active recognition is meaningful. On the other hand, the decision on ambiguity is
less a binary one than a continuous one. Consequently, we can always provide some
degree of ambiguity, e.g. by adding noise to the image or by assuming a changing
background — even if all objects would be distinguishable by a single view on
perfect images.
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Fig. 8. Exemplary views of the ten objects in the real world database.

Fig. 9. Exemplary views of objects conjoint with a less complex heterogeneous background.

Fig. 10. Exemplary views of objects conjoint with a more complex heterogeneous background.

Thus, for showing the global functionality of our planning algorithm, we tested it
on a bigger number of real objects, namely ten, which are likely to appear within the
same real world environment. Figure 8 shows these objects in a uniform background,
while Figs. 9 and 10 show them on some of the more complex cluttered backgrounds
that we also used in our tests.

The images with the homogeneous background were used in building our object
model. During that process, we once more take equidistantly distributed images
from a hemisphere, this time 21 views in vertical and 80 views in horizontal direc-
tions for each object. The reduction of the sampling rate compared to the toy
manikins provides a similarly extensive model (16800 entries) since we now have
more object classes.

In contrast to the previous experiments, feature acquisition cannot be accom-
plished by applying the eigenspace approach any more, since it is unable to cope
with changing backgrounds. Rather, we make use of the proposed local Wavelet
features (see Sec. 3.2) with the statistical Gibbs enhancement applied to images
of 256 × 256 pixels. In this setup, we had to augment the classification difficulty
by permitting slight object translation within the image. This translation is the
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displacement of the object in the test image to those in the images making up the
underlying model. In doing so, we allow background pixels to be wrongly classified
as a foreground member, thus influencing the class decision. In order to handle this
additional complexity, we displace every image under consideration to 25 discrete
positions. Namely we move it with any combination of {−16;−8; 0; 8; 16} pixels
vertically and horizontally for finding the maximal fit with a model base image.
Then, for each class probability, we just apply the highest occurring probability
over all transitions. Of course, real translations are not limited to those discrete
values, thus we are most likely to not obtain a perfect fit.

Learning from the previous experiments that early steps provide the highest
gain in classification, we reduced the number of steps to Tmax = 6 for each of
NR = 50 reinforcement learning training episodes. As in the synthetic dataset,
we again provided the entropy as a reward measure for executed sensor actions.
Since we want the view planning to operate on arbitrary backgrounds, training is
performed by just utilizing the shaded images (like those in Fig. 8). Also being
aware of the robustness of the algorithm concerning D and γ, in this case, we just
evaluated D = 10, γ = 0 and once more we set σ1 = σ2 = 1◦. State representation
was based on M = 1200 particles and experimental results are based on another
250 episodes performed on every object during evaluation. Figure 11 shows the

Fig. 11. Results for classification ratio, horizontal error and vertical error differentiated by the
kind of image background. All values are averaged over all ten object classes.
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classification ratio averaged over all ten classes, itemizing the kind of test image
background, the step information and the type of action selection, which is either
planned or random. The lower graphs in each plot show the development of the
horizontal and vertical pose estimation errors.

For all three background cases, the planned motion provides better values for any
arbitrary episode step. Regarding the classification ratio, the application of our view
planning algorithm shows the highest benefit when working on images with mildly
complex backgrounds. This case best fits the workings of the underlying classifier,
where single image classification is between being trivial (like with homogeneous
backgrounds) and being unreliable (as in highly complex backgrounds).

Note that the critical impact of our presented approach is closely tied to the
information gathered during the reinforcement learning training phase. If in this
stage, only highly unprofitable actions were performed, then almost no gain in
classification would be achieved by active view planning. Furthermore, during eval-
uation, the probability of acquiring a state density similar to those occurred in the
training phase declines with the step number t. Thus, planning of episodes’ later
steps is much more error-prone. Nonetheless, if approximation (22) is inoffensive,
i.e. if D is selected adequately, planning can still be advantageous.

7. Summary and Future Work

In this paper, we proposed a general framework for viewpoint selection and view-
point fusion and we demonstrated its application on both synthetic and real world
classification problems. We motivated that the optimization criterion therein is the
amount of necessary views needed for a reliable class decision, rather than consider-
ations on computation time. The main aspects of our viewpoint selection and fusion
approach are that it works in continuous state and action spaces and is independent
of the chosen statistical classifier. Our system can be automatically trained without
user interaction. During the actual object recognition task, it continuously provides
probabilistic information about the current object class and pose. The experiments
show classification rates that outperform those achieved by using random or reg-
ularly sampled views. Furthermore, we discussed in detail the impact of different
parameter values to the classification success of our proposed framework.

As mentioned, in our previous work11 we already studied the integration of
action costs into the view planning process. But this was solely done with the
assumption of one-dimensional, unrestricted camera movements. Future work will
consider the cost sensitive action selection when having a higher dimensional action
space. In particular, the retaining preparation of consistent rewards — as explained
in Sec. 5.3 — forms a challenging task in this extension. Another task will be to
simultaneously build an object model and use it for classification, what is called
Online-Learning. The challenge here is to find an optimized solution for the theo-
retically permanently competing demand on the camera action regarding these two
goals since the best next view for building a significant model is not necessarily
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the best one for classification. Especially incorporating the afore-mentioned ideas,
it is also an interesting and challenging task to extend the classification problem to
object categories, i.e. to have multiple similar objects within a single class. Mattern
et al.26 can already provide an approach for this idea.

References

1. J. Aloimonos, I. Weiss and A. Bandyopadhyay, Active vision, Int. J. Comput. Vis.
2(3) (1988) 333–356.

2. T. Arbel and F. Ferrie, Entropy-based gaze planning, Imag. Vis. Comput. 19(11)
(2001) 779–786.

3. R. Bajcsy, Active perception, Proc. IEEE 76(8) (1988) 996–1005.
4. Dana H. Ballard, Animate vision, Artif. Intell. 48(1) (1991) 57–86.
5. D. Cremers, Statistical Shape Knowledge in Variational Image Segmentation, PhD

thesis, Department of Mathematics and Computer Science, University of Mannheim,
Germany (2002).

6. F. Deinzer, J. Denzler, Ch. Derichs and H. Niemann, Aspects of optimal viewpoint
selection and viewpoint fusion, Computer Vision — ACCV 2006, eds. P. J. Narayanan,
S. K. Nayar and H. Shum, Lecture Notes in Computer Science, Vol. 3852 (Springer,
Hyderabad, India, 2006), pp. 902–912.

7. F. Deinzer, J. Denzler and H. Niemann, Classifier independent viewpoint selection for
3-D object recognition, Mustererkennung 2000, 22. DAGM-Symp., eds. G. Sommer,
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