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Abstract 3–D object recognition has been tackled by passive approaches in the
past. This means that based on one image a decision for a certain class and pose
must be made or the image must be rejected. This neglects the fact that some other
views might exist, which allow for a more reliable classification. This situation
especially arises if certain views of or between objects are ambiguous.
In this paper we present a classifier independent approach to solve the problem of
choosing optimals views (viewpoint selection) for 3–D object recognition. We for-
mally define the selection of additional views as an optimization problem and we
show how to use reinforcement learning for continuous viewpoint training and se-
lection without user interaction. The main focus lies on the automatic configuration
of the system, the classifier independent approach and the continuous representa-
tion of the 3–D space.
The experimental results show that this approach is well suited to distinguish and
recognize similar looking objects in 3–D by taking a minimum amount of views.

1 Motivation

The results of 3–D Object classification and localization depend – as matter of course –
strongly on the images which have been taken of the object. Based on ambiguities be-
tween objects in the data set some views might result in better some other in worse
results. For difficult data sets usually more than one view is necessary to decide reliably
for a certain object class. Problems with ambiguous views can especially be observed for
objects in real world applications.

Viewpoint selection tackles exactly the problem of finding a sequence of optimal
views to increase classification and localization results by avoiding ambiguous views
or sequentially ruling out possible object hypotheses. The optimality is not only defined
with respect to the recognition rate but also with respect to the number of views necessary
to get reliable results. The number of views should be as small as possible to delimit
viewpoint selection from randomly taking a large number of images.

In this paper a novel approach for viewpoint selection based on reinforcement learn-
ing is presented. The approach shows the following properties: first, the sequence of best
views is learned automatically in a training step, where no user interaction is necessary.
Second, the approach is classifier independent, so that an arbitrary classifier can be used.
This makes it applicable for a very wide range of applications. Third, the possible view-
points are continuous in 3–D, so that a discretization of the viewpoint space is avoided,
like it has been done before, for example in the work of [2]. Actually, our approach not
only allows to avoid ambiguous views. Such ambiguous views are presented in Figure 1.
Since it is classifier independent, views which are difficult for a certain classifier can also
be detected.
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Object o1: band Object o2: quiver Object o3: lamp Object o4: gun Object o5: trumpet

Figure 1. Examples for ambiguities between objects.

Viewpoint selection has been investigated in the past in several applications. Exam-
ples are 3–D reconstruction [8] or optimal segmentation of image data [6]. In object
recognition also some active approaches have already been discussed. In [2] different
frameworks for handling uncertainty and decision making (probabilistic, possibilistic
and Dempster–Shafer theory) have been compared with respect to viewpoint selection.
But this approach can only handle discrete positions and viewpoints. The work of [11]
presents an active recognition approach for which a camera must be moved around the
object. But this approach is not really a viewpoint selection. The active part is the selec-
tion of a certain area of the image for feature selection. The selected part is also called
receptive field [11]. Compared to our approach, no camera movement is performed nei-
ther during training nor during testing. Thus, the modeling of viewpoints in continuous
3–D space is also avoided. The work of [5, 4] tackles the viewpoint selection problem
from a knowledge based point of view. They use Bayesian networks to decide for the
next view to be taken. Therefore, the approach is dedicated to special recognition algo-
rithms and to certain types of objects, for which the Bayesian network has been manually
constructed. In other words, the approach is not classifier independent and cannot be ap-
plied without user interaction. Finally, an approach for 2–D viewpoint selection has been
presented in [3]. In contrast to the paper presented here, the degree of freedom for the
viewpoint selection is one, since the viewpoints were chosen by rotating a turntable. Also,
only synthetic images have been used.

In the following we will present a formal statement of the problem and the goals of
viewpoint selection in Section 2. In Section 3 we show how reinforcement learning can
be used to solve the problem stated in Section 2. Also an extension of the normal dis-
crete reinforcement learning is presented which makes it possible to model a continuous
viewpoint space. Thus viewpoint selection can be defined as a continuous optimization
problem. The experimental environment and results are presented and discussed in Sec-
tion 4. The paper concludes with a summary and an outlook to future work in Section 5.

2 Viewpoint Selection in 3–D Object Recognition

The goal of this work is to provide a solution to the problem of optimal viewpoint selec-
tion for 3–D object recognition without making a priori assumptions about the objects
and the classifier. The problem is to determine the next view of an object given a certain
decision about the class and the estimated pose of that object. The problem can also be
seen as the determination of a function, which maps a class and pose decision to a new
viewpoint. Of course, this function should be estimated automatically during a training
step. The estimation must be done by defining a criterion, which measures how useful
it is to choose a certain view given a classification and localization result. Additionally,
the function should take uncertainty into account in the recognition process as well as in
the viewpoint selection. The latter one is important, since new views are usually taken by
moving a robot arm and the final position of the robot arm will always be error–prone.
Last not least, the function should be classifier independent and should handle continuous
viewpoint and object pose spaces as well.



A straight forward way to formalizing the problem is given by looking at Figure 2. A
closed loop between sensingst and actingat can be seen. The chosenaction at ∈ IR2

corresponds to the executed camera movement, the sensedstate st ∈ {1, 2, . . . , k}× IR2

is class number and pose, returned by the classifier. The pose is modeled in our work as
the viewing position(α β)T on a sphere. Additionally, the classifier returns a so called
reward rt, which measures the quality of the chosen viewpoint. For a viewpoint, where
a correct decision for exactly one object class and pose is possible, the reward should
have a large value. A small value will indicate that the view is ambiguous and no reliable
classification and pose estimation is possible. It is worth noting that the reward might
also include costs for the camera movement, so that large movements of the camera are
punished. In our paper we neglect costs for camera movement for the time being.

At time t during the decision process, i.e. the selec-
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Figure 2. Principles of rein-
forcement learning.

tion of a sequence of viewpoints, the goal will be to maxi-
mize the accumulated and weighted future reward, called
thereturn Rt

Rt =
∞∑

n=0

γnrt+n+1 with weightγ ∈ [0; 1] (1)

The weightγ defines, how much influence a future re-
ward at timet + n + 1 will have on the overall return

Rt. Of course, the future rewards cannot be observed at time stept. Thus, the following
function, called theaction–value function Q(s, a)

Q(s, a) = E {Rt|st = s, at = a} (2)

is defined, which describes the expected return, when starting at time stept in states
with actiona. In other words, the functionQ(s, a) models the expected quality of the
chosen camera movementa for the future, if the classifier has returned class and pose
s before. This functionQ(s, a) is one of the key points in reinforcement learning and
will be described in the next section. Viewpoint selection can now be defined as a two
step approach: First, estimate the functionQ(s, a) during training. Second, if at any
time the classifier returnss as classification result, select that camera movementa which
maximizesQ(s, a), i.e. the expected accumulated and weighted rewards. The second
step is treated by defining a so calledpolicy π

π(s) = argmax
a

Q(s, a) (3)

which returns the best actionπ(s) to be performed while being in a states. During
training, this deterministic policy is often changed to a randomized one, to make sure
that all state/action pairs are evaluated [12].

It is worth noting that this approach defines a classifier independent way of viewpoint
selection, since the only classifier dependent component, is the rewardr t. The two step
approach described above makes no assumptions about the chosen classifier, unless the
classifier must return in some way an estimate of the reliability of its result. For statistical
classifier a straight forward way exists to define such a quantity. To give one example,
assume the difference between the maximum a posteriori probability and the second
maximum. In the case of an Eigenspace approach [7] for classification, also a natural
way for defining the reward is possible. A definition can be found in Section 4.

For the estimation and learning of the functionQ(s, a) reinforcement learning pro-
vides a bunch of algorithms and theoretical results on convergence. We will present one
algorithm, Monte Carlo learning, in the following section.



3 Reinforcement Learning Applied to Viewpoint Selection
3.1 General Approach
In the previous section viewpoint selection has been defined as an optimization problem.
The key issue of course is the estimation of the functionQ(s, a) which is the basis for
the decision process in equation (3). One of the demands defined in Section 1 is that
the selection of the most promising view should be learned without any user interaction.
Reinforcement learning provides many different algorithms to estimate the action value
function based on a trial and error method [12]. Trial and error means that the system
itself is responsible for trying certain actions in a certain state. The result of such a trial,
i.e. the returnRt, is then used to update the functionQ and to improve its policyπ (see
equation (3)).

In reinforcement learning a series ofepisodes are performed; each episodek consists
of a sequence of state/action pairs(st, at), t ∈ {0, 1, . . . , T}, where the actionat =
πk(st) in statest results in a new statest+1. A final statesT is called the terminal
state, where a predefined goal is reached and the episode ends. In our case, the terminal
state is that state, where classification and localization is possible with high confidence.
The definition of high confidence is application dependent. For each episodek the policy
πk(s), which has been estimated up to episodek, is fixed. During the episode new returns
R

(k)
t are collected for these state/action pairs(sk

t , ak
t ), which have been visited at timet

during the episodek. After the end of the episode the action–value function is updated.
In our case the so called Monte Carlo learning is applied, i.e. the action–value function
is updated by

∀(s, a) : Qπk (s, a) = Eπ{Rt | st = s, at = a} ≈
∑k

i=1

∑
{t|si

t=s,ai
t=a} R

(i)
t∑k

i=1 |{t|si
t = s, ai

t = a}|
(4)

In other words, the functionQ is estimated by the mean of all collected returnsR
(i)
t for

the state/action pair(s, a) for all episodes — which is the fraction on the right hand side
of (equation 4).

As a result for the next episode one gets a new decision ruleπk+1, which is now com-
puted by maximizing the updated action value function. This procedure is repeated until
the action–value function converges toQ∗ and as a consequence the final and optimal
decision ruleπ∗ it returned.

The reader is referred to a detailed introduction to reinforcement learning [12] for a
description of other ways for estimating the functionQ. Convergence proofs for several
algorithms can be found in [1].

3.2 Function Approximation for Continuous Reinforcement Learning
Most of the algorithms in reinforcement learning treat the states and actions as discrete
variables. Of course, in viewpoint selection parts of the state space (the pose of the object)
and the action space (the viewpoints of the object) is continuous. The idea of continuous
reinforcement learning can be summarized as follows:

1. collect returns for a finite set of state/action pairs(s, a) ∈ Q and use them to com-
puteQ(s, a) for these state/action pairs by methods of discrete reinforcement learn-
ing.Q(s) denotes the set of all state/action pairs(s ′, a′) ∈ Q whose states′ has the
same estimated class ass;

2. approximateQ(s, a), which is continuous in its parameters by a function

Q̂(s, a) =

∑
(s′,a′)∈Q(s)

d(s, a, s′, a′) · Q(s′, a′)∑
(s′,a′)∈Q(s)

d(s, a, s′, a′)
, (5)



which is the weighted average of the values ofQ(s ′, a′) of all (s′, a′) ∈ Q(s).

This two step approach is called function approximation [12] and has been pro-
posed in [10]. The weight functiond(s, a, s′, a′), which measures some kind of dis-
tance, defines how much influence the observed return at(s′, a′) ∈ Q has on an arbitrary
state/action pair(s, a). Obviously, the functionQ̂(s, a) is continuous ins anda. The
key point for viewpoint selection is the choice of the weightsd(·, ·, ·, ·). We have chosen
the product form

d(s, a, s′, a′) = Kϕ(ϕ(s̄, s̄′)) · Kµ(µ(s, s′)) (6)

for the weight function, whereKϕ andKµ are two kernel functions, for example Gaus-
sian kernels. The following two functionsϕ(·, ·) andµ(·, ·) are defined:

– The functionϕ(·, ·) measures the distance between the twoexpected destination
states (s̄, s̄′) of two state-action pairs(s, a) and(s′, a′). Assuming that the actions

a anda′ lead to two new destination statēs ands̄′: s
a−→ s̄, s′ a′−→ s̄′.

The closer the two destination states are to each other, the more adaptable isQ(s ′, a′)
for the estimation ofQ̂(s, a). For calculating the expected destination states we are
currently assuming that the pose estimation of states is correct and that actiona is
affecting the environment in an ideal way. For example, if the estimated position ofs
is 200◦ and an actiona moves the camera100◦ the pose of the expected destination
states̄ will be 300◦.

– The functionµ(·, ·) measures the distance between the twosource states s ands ′.
The fundamental idea for this distance is that close source states are suitable for using
Q(s′, a′) for the estimation of̂Q(s, a) because close source states imply less exter-
nal influences as e.g. precision of camera positioning, classification and localization
results.

As pose estimation is not done with absolute coordi-
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Figure 3. Source states (s,
s′), executed actions (a, a′),
resulting expected destination
states (̄s, s̄′). Also shown are
the distancesϕ andµ.

nates in space, but with angles on the sphere, calculating
distances between states can be done by measuring the
angle between the vectors on the sphere given by the
states (see figure 3):

ϕ(s̄, s̄′) = arccos
(

(s̄, s̄′)
||s̄|| · ||s̄′||

)
(7)

µ(s, s′) = arccos
(

(s, s′)
||s|| · ||s′||

)
(8)

Substituting equations (7), (8) and (6) in equation (5)
leads to the approximation of any action-value

Q̂(s, a) =

∑
(s′,a′)∈Q(s)

d(s, a, s′, a′)Q(s′, a′)∑
(s′,a′)∈Q(s)

d(s, a, s′, a′)
=

∑
(s′,a′)∈Q(s)

Kϕ(ϕ(s̄, s̄′))Kµ(µ(s, s′))Q(s′, a′)∑
(s′,a′)∈Q(s)

Kϕ(ϕ(s̄, s̄′))Kµ(µ(s, s′))
(9)

with the two kernel functionsKϕ(x) = exp
(−x2/D2

ϕ

)
andKµ(x) = exp

(−x2/D2
µ

)
.

The parametersDϕ andDµ describe how local (for smallD) or global (for largeD) the
approximation is working. “Local” means that faraway states have only a slight influence
on the approximated action-value resulting in a very detailed approximation. This is very
useful if there are a lot of state-action pairs. On the contrary, a “global” approximation
includes data over a wide area of distances and is suitable if only a very limited set of
collected action-values are available.



object rec.rate o1 o2 o3 o4 o5
o1: band 68.0% 100 40 7 0 0
o2: lamp 87.9% 21 153 0 0 0
o3: quiver 94.7% 8 0 143 0 0
o4: gun 64.7% 0 0 0 110 60
o5: trumpet 91.4% 0 0 0 16 169

object rec.rateo1 o2 o3 o4 o5
o1: band 92.0% 46 2 2 0 0
o2: lamp 96.0% 2 48 0 0 0
o3: quiver 98.0% 0 1 49 0 0
o4: gun 98.0% 0 0 0 49 1
o5: trumpet100.0% 0 0 0 0 50

Table 1. Classification results (in percent) and confusion matrix (absolute numbers) for the
Eigenspace approach: Left, without viewpoint selection (randomly chosen views). Right, with
viewpoint selection

3.3 Viewpoint Selection by Function Optimization

Viewpoint selection, i.e. the computation of the policyπ (see equation (3)), is now an
optimization problem

π(s) = argmax
a

π(s, a) = argmax
a

Q̂(s, a). (10)

Up to now, we have not looked for a closed form solution of the maximum of this or
any other kind of parameterized function. Instead, we applied numerical optimization
algorithms to the optimization problem in equation (10), like the adaptive random search
algorithm, followed by a simplex step (cf. [13]).

4 Experimental Evaluation

For the experiments presented in this section we have decided for an appearance based
classifier using the Eigenspace approach [7]. As already mentioned, the proposed view-
point selection is independent of the used classifier. The only classifier dependent part is
the reward function as used in (1). We use the following function

rt = min
λ,λ 
=κ

((
min

κ
d(Ot|Bκ)

)
− d(Ot|Bλ)

)
(11)

with d(Ot|Bκ) being the distance of the pictureOt to the object classBκ measured in
the Eigenspace (for an explanation of the Eigenspace approach and how classification is
usually done see for example [7]). In other words, we define a viewpoint to be useful if
the difference between the best and second best object hypotheses is large. It is worth
noting that of course other definitions of the reward are possible. Nevertheless such a
discussion is not the focus of this paper.

Our data set consists of five toy manikins (shown in Figure 1). Two groups of manikins
have been selected in a way that they are strongly ambiguous within the group: for the
first group they only differ by the band, the lamp and the quiver. The objects in the second
group can only be distinguished by the gun and the trumpet, which the manikins hold in
their hands. The reader should note that there does not exist one unique viewpoint, which
allows to distinguish all five objects.

During the training of the Eigenspace classifier for each object class 1200 images
have been taken covering the sphere around the object in steps of nine degree for the az-
imuthal angle and three degree for the colatitude angle. Two different lighting conditions
have been used. After the configuration of the classifier we got an overall recognition
rate of81.6%. The single results are shown in Table 1, on the left side, together with the
confusion matrix on the right. As expected the objects within the two groups (o1/o2/o3
and o4/o5) are sometimes mixed up. This is caused by the ambiguities that cannot be
resolved in any case having only one view. These results are compared in the following
with the viewpoint selection approach. The functionQ(s, a) (compare equation (2) and
equation (9)) has been estimated by performing for each object 150 random movements



of the camera around the object. The valueγ has been set to zero, i.e. only the current
reward is taken into account in the computation ofQ(s, a). Being in states t, i.e. having
a class and pose estimate for the object, a random camera movementa t is chosen. The
resulting view is used to classify the object. As a result, the reward is returned, which is
stored inQ(st, at). It is worth mentioning that this is a unsupervised training step. This
means also that the system is not told whether or not a classification result is correct.

During the test of our viewpoint selection approach the camera has been positioned
randomly on the sphere. An image is taken and based on the classification result the
decision for the next view is made based on equation (3). The next view is taken and
used to classify the object. Thus, only one new viewpoint is used in this case. One reason
is that these two images allow in almost all cases for a reliable classification with respect
to the reward defined in (11).

The classification rates for the five objects using viewpoint selection are shown in
Table 1, right. We got an overall classification rate of96.8% compared to a rate of81.6%
with a strategy which randomly chooses next views. The classification rate of81.6% is
calculated from the rates of the training set where only random views were produced. As
the tests of our viewpoint selection approach start from randomly chosen positions on
the sphere, the two classification rates are well comparably. As expected, the number of
confusions between objects within one group is noticeable reduced.

In Figure 4, two estimated functionŝQ(s, a) for object o1 (band) are shown. One
can see that there are several significant views. The best and the worst view for object o1
based on the estimated function̂Q(s, a) are shown in Figure 4. As one can see by means
of the plots, choosing low values forDϕ andDµ results in a more detailed̂Q(s, a) but
comes along with many local maxima.

The computation of onêQ(s, a) takes about8 · 10−3 seconds on a SGIO2 (R10000
150 MHz). The optimization algorithm needs an average of 300 function evaluations of
Q̂(s, a) which results in a total time needed for one viewpoint selection of2.4 seconds.

5 Summary and Future Work

In this paper we have presented a general framework of viewpoint selection that is inde-
pendent of the chosen classifier that can be trained automatically without user interac-
tions, and that results in a continuous space for the possible viewpoints. We claim that
these three properties have not been provided by any other approach up to now. The ex-
perimental results using an Eigenspace approach for classification show that even with
just one, optimally chosen additional view, recognition can be improved from81.6% to
96.8%.

Currently, some valid objections are possible: first, we neither do sensor data fusion
for the two views nor fusion of the classification results. This is the reason, why we can
use the parameterγ = 0. Of course, if we do sensor data fusion, i.e. we combine the
information of two images and more general methods of reinforcement learning, like Q–
learning [12], can be applied. This is one important goal of our future work. Second, we
have only used five classes. The reason was to show the principles of our approach, and
how it works in practice. Currently, we have started experiments in an office scene, where
more objects and a more difficult environment is found. Then, also the whole framework
of reinforcement learning becomes more important, where episodes and final states must
be taken into account. This was not necessary for the five classes in our experiments,
since almost always after the second view a correct classification was possible. Never-
theless, the classification rate could be improved by18.6%. Third, we have only tested
one classifier in our experiments. Of course, to show the classifier independency, we have
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to show results for other classifier, too. Actually, we have preliminary results for the sta-
tistical classifier, which has been described in [9]. Finally, we have not evaluated pose
estimation for the results neither with nor without viewpoint selection. This is our near
future work, to show that not only classification but also localization can be improved.
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