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Abstract. We provide an alternative methodology for vegetation segmentation in corn-
field images. The process includes two main steps, which makes the main contribution of
this approach: a) a low-level segmentation and b) a class label assignment using Bag of
Words (BoW) representation in conjunction with a supervised learning framework. The
experimental results show our proposal is adequate to extract green plants in images of
maize fields. As a classification task, an accuracy value of 95.3 percent has been achieved,
it is similar to the values reported in the current literature.
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1 Introduction

The rapid development of new technologies is changing the manner in which the food is produced.
Advances in electronics, artificial intelligence, machine vision and other technologies have been
integrated in the design and development of autonomous agricultural vehicles (AAV) capable
of performing a wide range of activities in the agricultural industry. The main benefits of AAV
are: save time and effort, major quality of food, environment protection and operational cost
reduction [1]. Autonomous vehicles are equipped with vision-based sensors, which provide all the
data needed to develop activities of localization, mapping, path planning and obstacle avoidance.

In a AAV, segmentation of vegetation is a critical step towards the development of different
activities in the crop field such as counting plants for germination monitoring, detecting weeds
for early season site specific weed management, or nutrient application. This task is usually
performed from images acquired by the vision system and must therefore be considered in the
design of agricultural vehicles. In short, a good algorithm to split an image into foreground
(maize/plants) and background (soil, irrigation pipes, etc.) is highly demanded to improve the
performance of the activities carried out by the AAV.

In this paper, we provide a method for vegetation segmentation in agricultural images (AI),
making the main finding. The procedure includes a low level segmentation process to get regions
of interest (ROIs), these are subsequently evaluated using a classifier model to determine which
ROIs do not belong to vegetation. Additionally, we provide a dataset composed of maize field
images and their corresponding labelled images which were made by inspection and carefully
hand painted. Images were captured with a single camera mounted on board a tractor, which is
part of the fleet in the RHEA project [2].

This paper is organized as follow: Section 2 provides a revision of the state of the art, Section
3 explains our work, Section 4 shows the testing we conducted to prove its efficiency, and Section
5 gives the conclusions.

? Corresponding author, Tel.: +34 1394, ext. 4375, 7546.
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2 Literature review

The first attempts to develop AAV were reported in the 1960s [3], new proposals have been
introduced to increase the effectiveness of the navigation systems in agricultural vehicles; they
are summarized by Mousazadeh [4], Vibhute et. al [5] and Saxena [6]. This work is limited to
dealing with outdoor scenes where vegetation segmentation is the first crucial step within a
complex process. In this context, Table 1 provides an overview of recent proposals. Definitions of
abbreviations used on this table can be consulted in Table 2, they refer to the colour vegetation
indices (CVIs).

Reference Application Methodology Performance/Remarks
*Haug et al. [7] Plant classification

crop/weed. Images cap-
tured on a carrot farm.

Segmentation of vegetation from soil is obtained
from NDVI. To discriminate between crops and
weeds machine learning is applied.

Classification accuracy 93.8%.

Hlaing and Khaing
[8]

Weed and crop segmenta-
tion and classification.

Segmentation is achieved combining ExG and area
thresholding algorithms.

Error rate 33.3% for misclassified
plants.

Tewari et al. [9] Herbicide applicator for
weed control.

The weed percentage in an image (total number
of green pixels / size image) is computed to deter-
mine the herbicide amount.

Weeding efficiency 90%

Wei et al. [10] Fruit picking robot. Otsu adaptive threshold algorithm and features in
OTA colour space are used for fruit detection.

Fruit object extraction 95%.

Choi et al. [11] Line extraction in paddy
fields.

Preocess includes: NIR imge, gray colour, median
filter, Otsu and blob noise elimination

Green segmentation performance is
not provided.

*+Torres et al. [12] Vegetation detection in
herbaceous crops.

Automatic thresholding algorithm based on Otsus
method.

Error between 0% and 10%. Classi-
fication rate is affected by segmen-
tation shape and compactness pa-
rameters.

Yang [13] Greenness identification in
cornfield

Segmentation is achieved from Hue components
in HSV colour space and ExG metric.

Recognition accuracy 95%. Sensible
to change illumination

*Jiang et al. [14] Crop row detection Rows detection from binary image obtained from
Gray1 metric.

Crop row detection accuracy 93%.
Depends on vegetation segmenta-
tion.

Meng et al. [15] System to Inter-row weeding
in maize crop field.

H component (HIS colour space) is segmented
considering Hue values in the range of [120,160].
From segmentation a scanning method is applied
for crop lines detection.

Average error below 2.7 cm.

*Guijarro et al. [16] Greenness segmentation. Combining vegetation indices (greenness) and
wavelets (texture).

Useful when the quality of imaging
greenness is low. Precision 92.09%.

Balasubramaniam
and Ananthi [17]

Segment incomplete
nutrient-deficient crop
images

Fuzzy C-means colour clustering High accuracy in extraction of defi-
ciency region.

*Kazmi et al. [18] Thistle detection in sugar
beet fields.

Detection based on CVI, Mahalanobis distance
and Linear discriminant analysis (LDA).

Accuracy up to 97%.

*Kazmi et al. [19] Weed detection sugar beet
and creeping thistle images.

BoW scheme with KNN and SVM classifiers. Accuracy of 99% in scanned leaf im-
ages. Outdoor images were not con-
sidered.

Ye et al. [20] Crop segmentation Adoption of Markov random field to provide belief
information from crop extraction.

92.29% accuracy, even under strong
illumination changes.

Cheng et al. [21] Rice and weed discrimina-
tion.

Harris corner detection and machine learning (de-
cision tree).

Precision of 98.8% to distinguish
weeds from rice plants.

Moorthy et al. [22] Vegetation segmentation. Nave Bayesian model using features from RGB
and HSV colour spaces.

87% on sugar beet and maize
plants.

Santos et al. [23] 3D plant modelling for plant
phenotyping (stereo vision)

3D Point cloud segmented by spectral clustering. Experiments with maize were un-
successful.

Lonescu et al. [24] Biomass type identification. Texture features, local texton dissimilarity and
BoW representation.

Accuracy 90%. Available for mobile
devices.

*Otsu as threshold strategy.
+ Unmanned aerial vehicle (UAV).
The normalized difference vegetation index (NDVI) value is obtained from a multi-spectral camera.

Table 1. The current state-of-the-art in vegetation detection for agricultural applications.
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Abbreviation Expression
Normalization Rn = R∗/(R∗ +G∗ +B∗), Gn = G∗/(R∗ +G∗ +B∗), Bn = B∗/(R∗ +G∗ +B∗),

R∗ = R/max(R), G∗ = G/max(G), B∗ = B/max(B)
Gray 0.2898 ∗Rn + 0.5870 ∗Gn + 0.1140 ∗Bn

Gray1 [14] 1.262 ∗Gn − 0.884 ∗Rn − 0.311 ∗Bn

ExG [25] 2 ∗Gn −Rn −Bn

ExR [26] 1.4 ∗Rn −Gn

CIVE [27] 0.441Rn − 0.811Gn + 0.385Bn − 18.78
ExGR [28] ExG− ExR
NDI [29] (Gn −Bn)/(Gn +Bn)
GB [25] Gn −Bn

RBI [30] (Rn −Bn)/(Rn +Bn)
ERI [30] (Rn −Gn) ∗ (Rn −Bn)
EGI [30] (Gn −Rn) ∗ (Gn −Bn)
EBI [30] (Bn −Gn) ∗ (Bn −Rn)

VEG Gn ∗Ra
n ∗B

(a−1)
n

Table 2. Colour channels and colour vegetation indices.

3 Proposed methodology

Bag of Words. It was initially introduced for text analysis [31], the success of this representation
is based on the high discriminative power of some words and the redundancy of language in
general. Subsequently, this technique was adapted in applications of computer vision [3, 18, 24,
32], where a visual word is a sparse vector of occurrence counts of a visual vocabulary of local
image features. The visual vocabulary is usually obtained by quantifying the image features into
visual words.

The process to determine whether a ROI is vegetation by using the BoW representation
consists of two stages: training and testing, Fig. 1. On the first, a classifier model for three
classes is built with features extracted from the ROIs. The model is used to predict the label of
a new ROI into the second stage. The three classes involved are; vegetation (v), soil (s) and one
more identified as others (o). The last class includes elements that did not identify with the two
predominant classes.
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Fig. 1. Bag of Words scheme for agricultural images.

Feature selection plays an important role in the performance of the classifier function. This
topic has been widely discussed in the literature, the researchers conclude that feature selection
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depends on the nature of problem [33]. Our work focuses on finding an appropriate set of features
for characterization of vegetation. Because of this, descriptors proposed recently by Kazim et al.
[19], mix of different CVIs, are used for vegetation characterization, Table 3. Additionally, the
local SIFT [34] and SURF[35] descriptors are also included for analysis.

Descriptor Colour vegetation indices
CVI2 ExG, GB
CVI4 ExG, CIVE, GB, ERI
CVI9 ExR, ExGR, NDI, GB, RBI, ERI, EGI, Rn, Gn

CVI14 ExG, CIVE, ExR, ExGR, NDI, GB, RBI, ERI, EGI, EBI, Rn, Gn, Bn, Gray
Table 3. Composition of the CVI descriptors [19]. See Table 2 for the expressions of the indices.

3.1 Classification model

Consider a set of N interest regions R = {R1, . . . , RN}, each element is a set of pixels Ri =
{r1, . . . , rm}, | Ri |= m. The number of pixels in each region is different. Also, the set of labels
associated to each region L = {l1, . . . , lN}, li ∈ {v, s, o} is given. Examples of ROIs and their
associated labels can be seen in Fig. 1. R is split into two complementary sets: RA and RB

(RA ∩RB ,�), | RA |= a and | RB |= b. The same with the label set: LA and LB (LA ∩ LB ,�),
| LA |= a and | LB |= b. RA and LA are used to train the classifier function while RB and LB

are used for parameter estimation.

Training process. Input: RA, LA and the vocabulary size K. Output: classification function Ψ .

1. Feature extraction: Consider a region Ri ∈ RA. For each pixel in Ri, a feature descriptor is
computed: Fi = F 1

i , . . . , F
m
i , F j

i ∈ <z, z is the dimension of the descriptor. The same applies
for all elements in RA having as result a set of descriptors: FA = {F1, . . . , Fa}.

2. Visual vocabulary: Descriptors in FA are used to train a clustering method to obtain K-
centres, we apply k-means [36]. Each centre represents a visual word. The set of K-visual
words is the visual vocabulary: W = {w1, . . . , wK}, wk ∈ <z. Also, from k-means, at each
descriptor in F is associated the label of the nearest centre. For example, Fi is represented for
Di = {D1

i , . . . , D
m
i }, D

j
i ∈ {1, . . . ,K} and the set of labelled features DA = {D1, . . . , Da}.

3. Codebook: For each element in DA, the frequency of each visual word is computed. The
vector of counts is divided by the number of pixels in the ROI at which it belongs to in order
to get a normalized vector. The frequency vectors are the codebooks: CBA = {H1, . . . ,Ha}.

4. Classification function: CBA, LA and a method of cross validation [37], used to find the best
parameter values, are processed during the learning process. The decision function chosen
for classification is the one provided by support vector machines (SVM) with parameter c
wich tells the SVM optimization how much misclassifying is allowed at each training [38].

Testing process. Input: RB , LB , W and Ψ . Output: Performance model.

5. Feature extraction: Apply Step 1 to get descriptors in RB : FB = {F1, . . . , Fb}.
6. Visual words: At each descriptor in FB is associated the label of the nearest cluster in W :
DB = {D1, . . . , Db}.

7. Codebook: Apply step 3 to get the codebooks in DB : CBB .
8. Class assignment: Ψ is used to predict the labels in CBB : L∗

B = {l∗1, . . . , l∗b}, l∗i ∈ {v, s, o}.
9. Performance model: The true labels (LB) and the labels obtained in the previous step (L∗

B)
are processed with the first expression in Table 4 to compute the accuracy value.
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ID Description Expression
OSR Overall success rate/Accuracy (nTP + nTN )/(nTP + nTN + nFP + nFN )
TPR True positive rate/Recall/Sensitivity nTP /(nTP + nFN )
TNR True negative rate/Specificity nTN/(nTN + nFP )
PPV Positive Predictive Value/Precision nTP /(nTP + nFP )
NPV Negative Predictive Value nTN/(nTN + nFN )
F F-measure (2 ∗ nTP )/(2 ∗ nTP + nFN + nFP )

Table 4. Statistical measures for performance evaluation [39]; nTP , nTN , nFP and nFN represent the
number of true positives, true negatives, false positives and false negative respectively.

3.2 Image vegetation segmentation

An image Irgb is segmented by classifying each pixel as foreground or background with the help
of the visual vocabulary W and the classifier function Ψ .

Image to Interest regions. Without knowledge of the image structure, the first step is to find
nearly uniform regions - ROIs. The principle is that pixels in small regions tend to contain
elements of the same class. Ideally, each ROI would contain a single class of elements; vegetation,
soil or other. However, improvement of the labelling process, using the BoW and the learning
strategy together, is not guaranteed. In short, each image pixel is assigned to a unique region:
IR = {IR1, . . . , IRp}, p is the number of ROIs in the image. To group pixels into multiple ROIs
four algorithms were tested: K-means [36], Self-organization maps (SOM) [40], Fuzzy C-means
(FCM) [41] and Over-segmentation (OS) [42].

Interest regions to vegetation detection. The IR set is processed following steps 5 through 8
above to get the label in each region: L∗

IR = {l∗1, . . . , l∗p}, l∗i ∈ {v, s, o}. At each pixel in Irgb is
assigned the label of the IR at which it belongs: Ilab(x, y) = l∗i if Irgb(x, y) ∈ IRi. The final
vegetation segmentation is achieved with the expression 1.

Ibin(x, y) =

{
1 if Ilab(x, y) = v,
0 otherwise.

(1)

4 Experimental results

4.1 Image dataset

A collection of Ω = 168 images, which were acquired under different illumination conditions
and different plant growth state, were selected and manually segmented. Really, the images
in Ω are subimages of size 920 × 950 obtained from the original images with resolutions of
2336 × 1752, based on the camera system geometry [43]. Unique pixels only contain a main
component (vegetation, soil or perhaps other unidentified component), so no mixed information
can be considered as relevant in this regard.

From Ω, Ω1 = 26 images were used solely for building the classifier function and the re-
maining Ω2 = 142 for measuring the success in the segmentation process. Table 5 displays some
representative colour images (first row) and their corresponding hand-labelled images (second
row). It should be noted that the labelled images have three different classes; green to identify
vegetation (v), light-brown for soil (s), and dark-brown for elements on the border between green
plants and soil or any different item on the image (o). Manual segmentation on the vegetation
borders is even difficult to carry out under the supervision of an expert. Moreover, we noted that
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the vegetation detection accuracy using a model with three classes (v, s, o) is greater than the
accuracy achieved with a binary classifier (v, s). Under this scenario, the inclusion of the third
class in the classifier design is justified while the segmentation performance is carried out from
a binary image where foreground comes from pixels with label v as described in subsection 3.2.

a) b) c) d) e)

Table 5. First row: RGB images. Second row: hand-labelled images (v, s and o). Third row: Binary
image, foreground (v) and background (joint s and o).

Classifier function estimation. Ω1 is divided into two sets: 20 images for training and 6
images for accuracy evaluation. 1005 regions in the first set (346-vegetation, 171-soil and 488-
others) and 739 regions in the second set (399-vegetation, 166-soil and 174-others). Two models
were considered; linear and nonlinear. In both cases, the penalization parameter (c) was selected
from the range [0.1, 22] with intervals of 0.5. For the nonlinear model, a radial base function
(RBF) with parameter γ was used as kernel. The searching consists on testing with pairwise
(c, γ) and the one with the best cross-validation accuracy is picked - γ takes the same range
values than c. This process was repeated several times changing the visual vocabulary size K;
varying from 50 to 2000 with intervals of 50. Classifiers with highest performance are given in
Table 6.

Descriptors SVM-Linear SVM-RBF
Abbreviation Size W c OSR(%) W (c, γ) OSR(%)
COM 1 1790 16.6 85.17 590 21.1, 6.6 91.50
CVI2 2 2000 13.6 80.25 1490 19.6, 21.1 93.83
CVI4 4 1400 9.6 78.49 1970 21.6, 20.6 95.31
CVI9 9 1900 17.6 82.31 1670 14.1, 21.6 94.65
CVI14 14 1950 17.1 81.20 1490 17.1, 20.6 94.84
SIFT 128 1550 21.6 68.12 1650 19.1, 21.6 90.99
SURF 64 1650 21.1 66.68 1950 18.1, 18.1 90.38

Table 6. Accuracy (%) of the classifier model for three classes (v, s, o).

From Table 6; the SVM-RBF has the best performance. The highest rates were achieved with
the descriptors proposed by Kazim et al. [19]. They reported an accuracy of 97% with CVI14 to
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detect creeping thistle. We have similar rates for maize field images, the highest performance is
95.31% with CVI4 and parameter values of (c, γ) = (21.6, 20.6) and K = 1970.

Extraction of ROIs. The quality segmentation of 50 images, randomly selected from Ω2, was
used as criteria to select the partitioning method. The segmentation was carried out with a linear
classifier model with COM as feature descriptor. The qualitative performance is summarized in
Table 7; the average values of OSR and TPR are similar in all cases. The parameter estimation
of each method was made as follow: For KM and FCM, the number of clusters was selected from
{5, 10, 20, 30, 40, 50, 60}, KM has shown good performance with 30 clusters, while FCM works
better with 10. For SOM, matlab default parameters were used; the row vector of dimension
sizes ([8, 8]), the number of training steps for initial covering of the input space (100), the initial
neighbourhood size (3), a hexagonal layer topology function and the link distance function were
used to find the distances between the layer’s neurons. In the case of OS, we set (k, σ,min) =
(0.1, 300, 100) to get small regions [42]. Visual results for a single image are displayed in Table 8;
the partitions obtained with different methods are in the first row, while the true labelled image
followed by the segmentation results and their respectively performance values (TPR%, OSR%)
appear in the second row.

Case Measure KM SOM FCM OS
Average OSR(%) 86.3 86.45 81.47 85.9

TPR(%) 65.47 68.79 35.92 62.59
Best OSR(%) 91.1 88.1 86.7 87.8

TPR(%) 89.3 96.7 84.7 77.2
Worst OSR(%) 74.8 80.8 61.1 68

TPR(%) 50 60.9 37.61 42.8
Table 7. Performance evaluation of different partitioning methods.

RGB image KMM SOM FCM OS

True label (89.3, 91.1) (96.7, 88.1) (84.7, 86.7) (77.2, 87.7)
Table 8. First row: RGB image split into multiples regions with different algorithms. Second row: True
labelled image followed by the segmentation results with their performance values (TPR%, OSR%).

From Table 7, SOM was selected as partitioning method due to its TPR value is the highest.

4.2 Comparative analysis

We experimentally compare our algorithm with different methodologies proposed in precision
agriculture and computer vision. A brief description of these methods is given below.
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Precision Agriculture:

(i) Vegetation indices: A threshold value, selected from the CVIs, is used to get green pixels
from an AI by thresholding. The resulting binary image is filtered to remove noise. Otsu’s
threshold technique is typically applied [18, 8, 13, 14, 44]. Our comparative analysis includes
ExG, ExGR, Gray1, CIVE, VEG, and COM indices and a 5 × 5 median filter for noise
remotion [18].

(ii) Yang el at. [13]: The RGB image is transformed to HSV colour space. From Hue, the smallest
(h1) and largest (h2) values are extracted. Channels R, G and B are processed separately
according to expression 2. The ExG metric is computed with the new R∗, G∗, and B∗. The
resulting colour image is segmented with the process described in (i).

A∗(x, y) =

{
0 if H(x, y) < h1 or H(x, y) > h2, where H is a colour channel

A(x, y) otherwise
(2)

(iii) Hlaing and Khaing [8]: For each pixel in the RGB image, the absolute values of green minus
red and green minus blue are calculated. If both of these distance values are greater than the
threshold (T), the pixel is classified as plant. If none or only one is greater than T , the pixel
is classified as background. T value is set to 20 as suggested by authors.

(iv) Tewari et al. [9]: For each pixel, when G colour intensity is greater than R and B colour
intensity values simultaneously, the pixel is assumed to be green pixel. Otherwise, the pixel
is assumed to be background.

Computer vision:

(v) Brust et al. [45]. A semantic segmentation process is carried out by using convolutional
patch nerworks (CN). Authors reported good results in multi-classification task for urban
scenes. As part of their contributions, they provide an open source CN library (CN24) which
includes a pre-trained model able to identify multiple classes in urban scenes (building,
window, sidewalk, car, road, vegetation, sky and unababeled). In our dataset, different CN
architectures were tested for vegetation segmentation considering the three interest classes.
The results obtained with different CN architectures and also with the pre-trained model were
compared. The best results were achieved with the pre-trained model, these are reported in
the comparative analysis.

(vi) Fröhlich et al. [46]. The semantic segmentation approach is based on the massive use of
random decision forests (RDF) and the computation of several basic as well as high-level
contextual features during learning (ICF).

The performance evaluation of methods above described was computed with images in Ω2 and
metrics in Table 4. The numerical results are provided in Table 9, as can be seen, the accuracy
values with CVIs metrics (except COM) are over 83% (columns 2-7), the best performance is
achieved with Tewari; 87.34% and 75.59% of OSR and TPR respectively. For a single image,
the vegetation segmentation obtained with methods in Table 9 are shown in Table 10.

The results reported by Yang et al. and Hlaing and Khaing were computed with a dataset
where plants are well defined (usually, one plant per image). On the first paper, an accuracy of
95% is reported, in the second case, authors do not provide vegetation segmentation results. In
our dataset (many plants per image), the performance of these two proposals is poor, below 80%.

It is well known from the literature that convolutional networks have been shown high perfor-
mance in various segmentation tasks. In our case, we tested different CN architectures with CN24
framework in our dataset and we could not find a configuration able to increase the performance
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ID ExG ExGR CIVE VEG COM Gray1 Yang Hlaing Tewari ICF CN24 BoW
OSR 86.95 85.83 83.76 85.72 75.95 87.71 79.40 70.64 87.34 75.29 82.64 86.11
TPR 71.67 83.51 74.02 67.27 53.22 74.16 60.25 13.65 75.59 53.90 71.43 73.24
TNR 89.58 85.20 85.14 88.35 90.58 89.40 84.08 76.60 89.84 82.04 84.89 90.39
PPV 66.38 40.17 44.25 60.16 73.36 63.32 44.28 4.23 60.31 54.16 39.71 58.60
NPV 93.00 97.47 95.74 92.99 78.61 94.00 91.08 90.44 92.49 83.95 93.72 89.51
F 67.10 53.05 50.27 61.29 55.59 67.67 44.94 3.24 64.96 52.35 43.32 61.60

Table 9. Performance evaluation for vegetation segmentation including our proposal. Metrics into rows,
and methods into columns. Metrics can be consulted in Table 4.

value, even so, the accuracy is into the average of the accuracy values in the Table 9. ICF shows
similar performance than CN24, it is important to mention that although it has low performance
in vegetation detection, results can be relevant in the context of crop line detection given that
vegetation on the crop line is preserved and well limited.

Finally, BoW representation has a OSR of 86.11% with a percentage of vegetation correctly
identified of 73.24%. The rate of elements well classified is 90.39%, however the overlapping
between green plants and background is 61.6%, similar values as such obtained with other pro-
posals.

RGB image ExG ExGR CIVE VEG COM Gray1

(78.7, 96) (89.6, 94.9) (90.1, 94.9) (76.9, 95.6) (35.1, 86.8) (72.8, 95.4)

True label Yang Hlaing Tewari ICF CN24 BoW
(19.6, 76.5) (0.72, 89.2) (74.4, 95) (67.2, 94.7) (72.7, 92.6) (87.9, 95.1)

Table 10. Segmentation of an image with methodologies in Table 9. In brackets, the performance values
(TPR%, OSR%).

In addition to the results above displayed, images in Table 5 were processed with; Gray1,
Tewari et al. and BoW, they have the best performance in Table 9, see Table 11.

On this section, a comparative analysis of different techniques for vegetation detection has
been reported. Results presented were computed using the Image Processing Toolbox MATLAB
2013a for 64 bits under Windows 7 and Intel Core 2 CPU, 3 GHz, 4 GB RAM.

5 Conclusions

A wide range of computational vision tasks in agricultural applications could increase their
performance if they start with an efficient vegetation segmentation process. On this paper, we
presented an alternative method to identify vegetation in cornfield images, its performance (un-
der different illumination conditions and growth stages) is similar to those reported in the current
state-of-the-art. The accuracy achieved to discriminate between three classes is over 95%; how-
ever, segmentation method needs additional improvements. This is because although the classifier
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a) b) c) d) e) f)

G
ra

y
1

(5.17, 98.2) (85.6, 92.3) (76.6, 87.8) (86.7, 93.6) (88.9, 86) (92.5, 73.6)

T
ew

a
ri

et
a
l.

(22, 99.7) (85.3, 91.9) (74.7, 87.7) (90.4, 92.7) (88.3, 86.4) (84.8, 80.7)

B
o
W

(0, 99.8) (87.3, 91.8) (72.8, 87.2) (92.1, 92.1) (87.6, 86.5) (78, 77.8)
Table 11. Segmentation results under differents scenarios. In Table 5, the RGB images and their corre-
sponding true labelled image (image per column). Performance values in brackets (TPR%, OSR%).

achieves good performance, the segmentation algorithm depends on the method used to get the
ROIs of the image. As future work, we suggest the use of probabilistic models [47] in order to im-
prove the image segmentation results. Another possible future line of research is the deep analysis
of results obtained with IFC method, segmented images are promising for crop line detection.
To conclude, a set of 168 images and their corresponding handmade-labelled images are publicly
available (https://www.fdi.ucm.es/profesor/pajares/ACIVS/), they are part of the contributions
of this work. The dataset can be useful for performance evaluation on future researches.
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