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Abstract. One of the most prominent problems in machine learning in
the age of deep learning is the availability of sufficiently large annotated
datasets. For specific domains, e.g. animal species, a long-tail distribu-
tion means that some classes are observed and annotated insufficiently.
Additional labels can be prohibitively expensive, e.g. because domain ex-
perts need to be involved. However, there is more information available
that is to the best of our knowledge not exploited accordingly.

In this paper, we propose to make use of preexisting class hierarchies like
WordNet to integrate additional domain knowledge into classification.
We encode the properties of such a class hierarchy into a probabilistic
model. From there, we derive a novel label encoding and a corresponding
loss function. On the ImageNet and NABirds datasets our method offers
a relative improvement of 10.4% and 9.6% in accuracy over the baseline
respectively. After less than a third of training time, it is already able to
match the baseline’s fine-grained recognition performance. Both results
show that our suggested method is efficient and effective.

Keywords: Class Hierarchy - Knowledge Integration - Hierarchical Clas-
sification

1 Introduction

In recent years, convolutional neural networks (CNNs) have achieved outstand-
ing performance in a variety of machine learning tasks, especially in computer
vision, such as image classification [15, 25] and semantic segmentation [27]. Train-
ing a CNN from scratch in an end-to-end fashion not only requires considerable
computational resources and experience, but also large amounts of labeled train-
ing data [35]. Using pre-trained CNN features [33], adapting existing CNNs to
new tasks [17] or performing data augmentation can reduce the need for labeled
training data, but may not always be applicable or effective.

For specific problem domains, e.g. with a long-tailed distribution of samples
over classes, the amount of labeled training data available is not always sufficient
for training a CNN to reasonable performance. When unlabeled data already ex-
ists, which is not always the case, active learning [32] to select valuable instances
for labeling may be applied. However, labels still have to be procured which is
not always feasible.
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Fig. 1. Comparison between a loose set of independent classes and a class hierarchy
detailing inter-class relations.

Besides information from more training data, domain knowledge in the form
of high-level information about the structure of the problem can be considered. In
contrast to annotations of training data, this kind of domain knowledge is already
available in many cases from projects like iNaturalist [38], Visual Genome [23],
Wikidata [41] and WikiSpecies®.

In this paper, we use class hierarchies; e.g. WordNet [11], as an example of
domain knowledge. In contrast to approaches based on attributes, where an-
notations are often expected to be per-image, class hierarchies offer the option
of domain knowledge integration on the highest level with the least additional
annotation effort. We encode the properties of such a class hierarchy into a
probabilistic model that is based on common assumptions around hierarchies.
From there, we derive a special label encoding together with a corresponding loss
function. These components are applied to a CNN and evaluated systematically.

Our main contributions are: (i) a deep learning method based on a prob-
abilistic model to improve existing classifiers by adding a class hierarchy which
(ii) works with any form of hierarchy representable using a directed acyclic graph
(DAG), i.e. does not require a tree hierarchy. We evaluate our method in experi-
ments on the CIFAR-100 [24], ImageNet and NABirds [37] datasets to represent
problem domains of various scales.

2 Related Work

Hierarchical methods have been subject of extensive research in image catego-
rization. A given class hierarchy can be used explicitly to build a hierarchical
classifier [20, 28], to regularize a preexisting model [12, 34], to construct an em-
bedding space [2, 10, 13, 21], in metric learning-based methods [20, 40, 44] or,
to construct a probabilistic model [7, 14].

Leveraging external semantic information for performance improvements,
also called knowledge transfer, has been studied in the context of text categoriza-
tion [3] as well as visual recognition [19, 30, 42]. Attributes are also considered
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as a knowledge source in [21]. While improvements are generally expected when
using such methods, disagreements between visual and semantic similarity may
introduce new errors [5]. Alternatively, visual hierarchies can be learned [1, 43|
or used implicitly [4, 8]. An extreme case of knowledge transfer is zero-shot
learning, where some categories have zero training examples [18, 31].

Our work is most closely related to [28] in that we consider similar individual
classification problems. However, instead of their step-by-step approach using
binary classifiers, our probabilistic model is evaluated globally for inference. A
similar approach is also used in [7], where a relations between classes such as
subsumption and mutual exclusion are extracted from a hierarchy and then used
to condition a graphical model.

Hierarchical Data Typical image classification datasets rarely offer hierarchical
information. There are exceptions such as the iNaturalist challenge dataset [38]
where a class hierarchy is derived from biological taxonomy. Exceptions also
include specific hierarchical classification benchmarks, e.g. [29, 36] as well as
datasets where the labels originate from a hierarchy such as ImageNet [6]. The
Visual Genome dataset [23] is another notable exception, with available meta-
data including attributes, relationships, visual question answers, bounding boxes
and more, all mapped to elements from WordNet.

To augment existing non-hierarchical datasets, class hierarchies can be used.
For a typical object classification scenario, concepts from the WordNet database
[11] can be mapped to object classes. WordNet contains nouns, verbs and adjec-
tives that are grouped into synsets of synonymous concepts. Relations such as
hyponymy (is-a), antonymy (is-not), troponymy (is-a-way-of) and meronymy
(is-part-of) are encoded in a graph structure where synsets are represented by
nodes and relations by edges respectively. In this paper, we use the hyponymy
relation to infer a class hierarchy.

3 Method

In this section, we propose a method to adapt existing classifiers to hierarchical
classification. We start by acquiring a hierarchy and then define a probabilistic
model based on it. From this probabilistic model, we derive an encoding and a
loss function that can be used in a machine learning environment.

3.1 Class Hierarchy

For our model, we assume that a hierarchy of object categories is supplied, e.g.
from a database such as WordNet [11] or WikiSpecies. It is modeled in the form
of a graph W = (S, h), where S denotes the set of all possible object categories,
called synsets in the WordNet terminology. These are the nodes of the graph.
Note that S is typically a superset of the dataset categories C' C S, since parent
categories are included to connect existing categories, e.g. vehicle is a parent
of car and bus, but not originally part of the dataset.



4 Clemens-Alexander Brust and Joachim Denzler

A hyponymy relation h € S x S over the classes, which can be interpreted as
directed edges in the graph, is also given. For example, (s,s’) € h means that s
is a hyperonym of s, or s is a hyponym of s’, meaning s is-a s’. In general, the
is-a relation is transitive. However, WordNet only models direct relationships
between classes to keep the graph manageable and to represent different levels of
abstraction as graph distances. The relation is also irreflexive and asymmetric.

For the following section, we assume that W is a directed acyclic graph
(DAG). However, the WordNet graph is commonly reduced to a tree, for example
by using a voting algorithm [36] or selecting task-specific subsets that are trees
[6]. In this paper, we work on the directed acyclic graph (DAG) directly.

3.2 Probabilistic Model

Elements of a class hierarchy are not always mutually exclusive, e.g. a corgi
is also a dog and an animal at the same time. Hence, we do not model the
class label as one categorical random variable, but assume multiple independent
Bernoulli variables Y;, s € S instead. Formally, we model the probability of any
class s occurring independently (and thus allowing even multi-label scenarios),
given an example x:

P(Y, = 1]X = a), 1)

or, more concisely,

P(Y"]X). (2)

The aforementioned model on its own is overly flexible considering the prob-
lem at hand, since it allows for any combination of categories co-occurring. At
this point, assumptions are similar to those behind a one-hot encoding. How-
ever, from the common definition of a hierarchy, we can infer a few additional
properties to restrict the model.

Hierarchical decomposition A class s can have many independent parents S’ =

si,...,8,. We choose Yd, to denote an observation of at least one parent and
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Based on observations Yg/, we can decompose the model from Equation (2) in a
way to capture the hierarchical nature. We start by assuming a marginalization
of the conditional part of the model over the parents Y :

P(Y|X) = P(Y"|X, Y{)P(Yg | X)

+ P(YS|X,Y5)P(Ye | X). (3)

The details of this decomposition are given in the supplementary material.



Using Hierarchies to Improve Deep Classifiers 5

Simplification We now constrain the model and add assumptions to better reflect
the hierarchical problem. If none of the parents S” = s/, ..., s, of a class s occur,
we assume the probability of s being observed for any given example to be zero:

S

P(Y;'|X,Yg) = P(Y}|Yg) =o0. (4)

This leads to a simpler hierarchical model, omitting the second half of Equa-
tion (3) by setting it to zero:

P(Y|X) = P(Y,"|X, Yg) P(YS | X). (5)

Parental independence To make use of recursion in our model, we require the
random variables Yy, ..., Yy to be independent of each other in a naive fashion.

Using the definition of Y;I , we derive:

Ed
PYF|IX)=1-J]1- P(Y,]|X). (6)
i=1

Parentlessness In a non-empty DAG, we can expect there to be at least one node
with no incoming edges, i.e. a class with no parents. In the case of WordNet,
there is exactly one node with no parents, the root synset entity.n.01. A
marginalization over parent classes does not apply there. We assume that all
observed classes are children of entity and thus set the probability to one for a
class without parents:

P(YFIX, S =0) = 1. (7)

Note that this is not reasonable for all hierarchical classification problems. If the
hierarchy is composed of many disjoint components, P(Y;"|X, S’ = () should be
modeled explicitly. Even if there is only a single root, explicit modeling could be
used for tasks such as novelty detection.

3.3 Inference

The following section describes the details of the inference process in our model.

Restricted Model Outputs Depending on the setting, when the model is used for
inference, the possible outputs can be restricted to the classes C' that can actually
occur in the dataset as opposed to all modeled classes S including parents that
exist only in the hierarchy. This assumes a known class set at test time as opposed
to an open-set problem. We denote this setting mandatory labeled node prediction
(MLNP) and the unrestricted alternative arbitrary node prediction (ANP).

Prediction To predict a single class s given a specific example x, we look for
the class where the joint probability of the following observations is high: (i)
the class s itself occurring (V") and (ii) none of the children S” = s/,..., s,
occurring (Y, ):
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(a) Encoding e(y) (b) Loss Mask m(y)

Fig. 2. Hierarchical encoding and loss mask for y = animal. Shaded nodes represent 1
and light nodes 0 respectively.

s(z) = argmax P(Y,;F|X)P (Y5, | X, Y,). (8)
seCCS

Requiring the children to be pairwise independent similar to Equation (6), in-
ference is performed in the following way:

[S"]
s(z) = argmax P(Y,"|X) [ 1 - P(Y|X, V). (9)
s€CCS paiey i

Because P(Y;t|X) can be decomposed according to Equation (3) and expressed
as a product (cf. Equation (6)), we infer using:

S| 1S
s(x) = argmax P(VHX, V) - (1= [[1- POVJ1X)- [T 1 - POHIX Y.
seCCS i=1 ‘ i=1 !
Parent nodes S’ Child nodes 'S

(10)

Again, P(Y;{\X ) can be decomposed. This decomposition is performed recur-

sively following the scheme laid out in Equation (3) until a parentless node is
reached (cf. Equation (7)).

3.4 Training

In this section, we describe how to implement our proposed model in a machine
learning context. Instead of modeling the probabilities P(Y,"|X) for each class
s directly, we want to estimate the conditional probabilities P(Y,"|X, Y4 ). This
changes each individual estimator’s task slightly, because it only needs to dis-
criminate among siblings and not all classes. It also enables the implementation
of the hierarchical recursive inference used in Equation (10).
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The main components comprise of a label encoding e : S — {0, 1}|S| as well
as a special loss function. A label y € S is encoded using the hyponymy relation
h € S x S, specifically its transitive closure T (h), and the following function:

1 ify=sor(y,s) €T(h),
el)s = { () €T (1)

0 otherwise.

A machine learning method can now be used to estimate encoded labels
directly. However, a suitable loss function needs to be provided such that the
conditional nature of each individual estimator is preserved. This means that,
given a label y, a component s should be trained only if one of its parents
s’ is related to the label y by T (h), or if y is one of its parents. We encode
this requirement using a loss mask m : S — {0,1}!5], defined by the following
equation:

1 y=sor
m(y)s = A(s,s')eh:y=s"or (y,s) € T(h), (12)
0 otherwise.

Figure 2 visualizes the encoding e(y) and the corresponding loss mask m(y)
for a small example hierarchy. Using the encoding and loss mask, the complete
loss function £ for a given data point (x,y) and estimator f : X — {0,1}I5l
is then defined by the the masked mean squared error (alternatively, a binary
cross-entry loss can be used):

Ly(z,y) =m(y)" (e(y) — f(x))*. (13)

The function f(z)s is then used to estimate the conditional probabilities
P(Y;F|X,Yd,). Applying the inference procedure in Section 3.3, a prediction is
made using the formula in Equation (10) and substituting f(z), for P(Y;"|X,Y4)).

4 Experiments

We aim to assess the effects of applying our method on three different scales of
problems, using the following datasets:

CIFAR-100 For our experiments, we want to work with a dataset that does not
directly supply hierarchical labels, but where we can reasonably assume that an
underlying hierarchy exists. The CIFAR-100 dataset [24] fulfills this requirement.
Because there are only 100 classes, each can be mapped to a specific synset in
the WordNet hierarchy without relying on potentially faulty automation. Di-
rect mapping is not always possible, e.g. aquarium_fish, which doesn’t exist in
WordNet and was mapped to freshwater fish.n.01 by us. This process is a
potential error source.
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The target hierarchy is composed in three steps. First, the synsets mapped
from all CIFAR-100 classes make up the foundation. Then, parents of the synsets
are added in a recursive fashion. With the nodes of the graph complete, directed
edges are determined using the WordNet hyponymy relation. Mapping all classes
to the WordNet synsets results in 99 classes being mapped to leaf nodes and one
class to an inner node (whale). In total, there are 267 nodes as a result of the
recursive adding of hyperonyms.

ImageNet Manually mapping dataset labels to WordNet synsets is a potentional
source of errors. An ideal dataset would use WordNet as its label space. Be-
cause of WordNet’s popularity, such datasets exist, e.g. ImageNet [6] and 80
Million Tiny Images [36]. We use ImageNet, specifically the dataset of the 2012
ImageNet Large Scale Visual Recognition Challenge. It contains around 1000
training images each for 1000 synsets. All 1000 synsets are leaf nodes in the
resulting hierarchy with a total of 1860 nodes.

NABirds Quantifying performance on object recognition datasets such as CI-
FAR and ImageNet is important to prove the general usefulness of a method.
However, more niche applications such as fine-grained recognition stand to ben-
efit more from improvements because the availability of labeled data is much
more limited. We use the NABirds dataset [37] to verify our method in a fine-
grained recognition setting. NABirds is a challenge where 555 categories of North
American birds have to be differentiated. These categories are comprised of 404
species as well as several variants of sex, age and plumage. It contains 48,562
images split evenly into training and validation sets. Annotations include not
only image labels, but also bounding boxes and parts. Additionally, a class hi-
erarchy based on taxonomy is supplied. It contains 1010 nodes, where all of the
555 visual categories are leaf nodes.

4.1 Experimental Setup

Convolutional Neural Networks For our experiments on the CIFAR-100 dataset,
we use a ResNet-32 [15] in the configuration originally designed for CIFAR. The
network is initialized randomly as specified in [15].

We use a minibatch size of 128 and the adaptive stochastic optimizer Adam
[22] with a constant learning rate of 0.001 as recommended by the authors.
Although SGD can lead to better performance of the final models, its learning
rate is more dependent on the range of the loss function. We choose an adaptive
optimizer to minimize the influence of different ranges of loss values.

In our NABirds and ImageNet experiments, we use a ResNet-50 [15, 16]
because of the larger image size and overall scale of the dataset. The minibatch
size is reduced to 64 and training is extended to 120,000 steps for NABirds
and 234,375 steps for ImageNet. We crop all NABirds images using the given
bounding box annotations and resize them to 224 x 224 pixels.

All settings use random shifts of up to 4 pixels for CIFAR-100 and up to 32
pixels for NABirds and ImageNet as well as random horizontal flips during train-
ing. All images are normalized per channel to zero mean and standard deviation
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one, using parameters estimated over the training data. Code will be published
along with the paper. We choose our ResNet-50 and ResNet-32 baselines to be
able to judge effects across datasets, which would not be possible when selecting
a state-of-the-art method for each dataset individually. Furthermore, the moder-
ately sized architecture enables faster training and therefore more experimental
runs compared to a high performing design such as PNASNet [26].

FEvaluation We report the overall accuracy, not normalized w.r.t class instance
counts. Each experiment consists of six random initializations per method for
the CIFAR-100 dataset and three for the larger-scale NABirds and ImageNet
datasets, over which we report the average. We choose to compare the methods
using a measure that does not take hierarchy into account to gauge the effects of
adding hierarchical data to a task that is not normally evaluated with a specific
hierarchy in mind. Using a hierarchical measure would achieve the opposite: we
would measure the loss sustained by omitting hierarchical data.

4.2 Overall Improvement — ImageNet

Accuracy (%)
1N
o

e —--- DBaseline
,// —— w/ Hierarchy
20 -2 T T T
50000 100000 150000 200000
Steps

Fig. 3. Accuracy on the ImageNet validation set over time. Our hierarchical train-
ing method gains accuracy faster than the flat classifier baseline. We report overall
classification accuracy in percent.

In this experiment, we quantify the effects of using our hierarchical clas-
sification method to replace the common combination of one-hot encoding and
mean squared error loss function. We use ImageNet, specifically the ILSVRC2012
dataset. This is a classification challenge with 1000 classes whose labels are taken
directly from the WordNet hierarchy of nouns.

Figure 3 shows the evolution over time of accuracy on the validation set.
After around 240,000 gradient steps, training converges. The one-hot baseline
reaches a final accuracy of 49.1%, while our method achieves 54.2% with no
changes to training except for our loss function and hierarchical encoding. This
is a relative improvement of 10.4%.

While an improvement of accuracy at the end of training is always welcome,
the effects of hierarchical classification more drastically show in the change in
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accuracy over time. The strongest improvement is observed during the first train-
ing steps. After training for 31250 steps using our method, the network already
performs with 28.9% accuracy. The one-hot baseline matches this performance
after 62500 gradient steps, taking twice as long. The baseline’s final accuracy of
49.1% is matched by our method after only 125,000 training steps, resulting in
an overall training speedup of 1.88x.

4.3 Speedup — CIFAR-100

X 50
>
=
5 —-—- DBaseline
8 —— w/ Hierarchy
< O T T T T
0 20000 40000 60000
Steps

Fig. 4. Results on the CIFAR-100 validation set. Our hierarchical training method
gains accuracy faster than the flat classifier baseline. We report overall classification
accuracy in percent.

We report the accuracies on the validation set as they develop during training
in Figure 4. As training converges, we observe almost no difference between both
methods, with our hierarchical method reaching 54.6% and the one-hot encoding
baseline at 55.4%. However, the methods differ strongly in the way that accuracy
is achieved. After the first 500 steps, our hierarchical classifier already predicts
10.7% of the validation set correctly, compared to the baseline’s 2.8%. It takes
the baseline another 1600 steps to match 10.7%, or 4.2 times as many steps.

This advantage in training speed is very strong during initial training, but
becomes smaller over time. After the first half of training, the difference between
both methods vanishes almost completely.

4.4 Fine-Grained Recognition — NABirds

To evaluate the performance of our hierarchical method in a more specific set-
ting, we use the NABirds dataset [37], a fine-grained recognition challenge where
the task is to classify 555 visual categories of birds. A hierarchy is given by the
dataset. We observe results similar to the ImageNet dataset (see Section 4.2),
where our method leads to an improvement in both training speed and overall
accuracy. The one-hot baseline converges to an accuracy of 56.5%. Our hierar-
chical classifier reaches 61.9% after the full 120,000 steps of training. It already
matches the baseline’s final accuracy at 39,000 iterations, reducing training time
to less than a third. The relative improvement with full training is 9.6%.
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Table 1. Results Overview.

Accuracy (%) Speedup w/Hierarchy
Dataset ‘# of classes|| Baseline ‘W/ HierarchyHOverall‘ Initial
CIFAR-100 |100 55.4+0.84| 54.6 = 1.03 — 7.00
NABirds 555 56.5+£0.49|61.9+£0.27| 3.08 10.00
ILSVRC2012{1000 49.1£0.33|54.2£0.04| 1.88 —

4.5 Overview and Discussion

Table 1 provides the most important facts for each dataset. We report the ac-
curacy at the end of training for the one-hot baseline as well as our method.
Overall speedup indicates how much faster in terms of training steps our hi-
erarchical method achieves the end-of-training accuracy of the baseline. Initial
speedup looks at the accuracy delivered by our method after the first validation
interval. We then measure how much longer the baseline needs to catch up.

On all 3 datasets, the initial training is faster using our method. However,
we only observe an improvement in classification accuracy on ImageNet and
NABirds. With CIFAR-100, the benefits of adding hierarchical information are
limited to training speed. There are a few possible explanations for this:

First, the CIFAR-100 dataset is the only dataset that requires a manual
mapping to an external hierarchy, whereas the other datasets either supply one
or have labels directly derived from one. The manual mapping is a possible error
source and as such, could explain the observation, as could the small image size.

The second possible reason lies in the difference between semantic similar-
ity and visual similarity [5, 9]. Semantic similarity relates two classes using their
meaning. It can be extracted from hierarchies such as WordNet [11], for example
by looking at distances in the graph. Visual similarity on the other hand relates
images that look alike, regardless of the meaning behind them. When classify-
ing, we group images by semantics, even if they share no visual characteristics.
Adding information based on only semantics can thus lead to problems.

5 Conclusion

We present a method to modify existing deep classifiers such that knowledge
about relationships between classes can be integrated. The method is derived
from a probabilistic model that is itself based on our understanding of the mean-
ing of hierarchies. Overall, it is just one example of the integration of domain
knowledge in an otherwise general method. One could also consider our method
a special case of learning using privileged information [39].

Our method can improve classifiers by utilizing information that is freely
available in many cases such as WordNet [11] or WikiSpecies. There are also
datasets which include a hierarchy that is ready to use [6, 37].

Further research should focus on the data insufficiency aspect and quantify
the data reduction made possible by our method on small datasets, and compare
the sample efficiency to the baseline for artificially reduced datasets as well as
alternatives such as data augmentation.
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