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Abstract. Neural networks and especially convolutional neural networks
are of great interest in current computer vision research. However, many
techniques, extensions, and modifications have been published in the
past, which are not yet used by current approaches. In this paper, we
study the application of a method called QuickProp for training of deep
neural networks. In particular, we apply QuickProp during learning and
testing of fully convolutional networks for the task of semantic segmen-
tation. We compare QuickProp empirically with gradient descent, which
is the current standard method. Experiments suggest that QuickProp
can not compete with standard gradient descent techniques for complex
computer vision tasks like semantic segmentation.

1 Introduction

Convolutional neural networks (CNNs) [10] achieve state-of-the-art performance
in many areas of computer vision including image classification, object detection,
and segmentation [6,9,11,15]. However, the training time of large networks is a
major bottleneck when evaluating different architectures and new types of layers.
In this work, we study the QuickProp algorithm [4] for decreasing training time in
the domain of semantic segmentation and potentially reaching a better optimum
during training.

QuickProp [4] is a second-order optimization algorithm that uses a simple
approximation of the Hessian’s diagonal to accelerate optimization and there-
fore belongs to the class of Quasi-Newton algorithms. So far, it has been evalu-
ated and studied only for standard neural network training [12,17,18]. However,
current neural network architectures, like CNNs, are characterized by a sig-
nificantly larger number of parameters. Furthermore, the increased number of
layers leads to a higher numerical error when computing the gradients with back-
propagation [7]. For an evaluation of its performance, we test the algorithm in
synthetic and real-world experiments and compare its behavior to the traditional
and widely used optimization approach gradient descent (GD).

In this work, we focus on the task of semantic segmentation. Each pixel of
an image is classified into known classes and thereby the image is segmented
into meaningful regions. In contrast to unsupervised segmentation, this not only
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returns possible object boundaries as regions but also semantic labels for each
of those regions. For this task, we make use of the convolutional network archi-
tectures as proposed in [1] and use them throughout all our experiments.

The remainder of the paper is structured as follows. In Section 2, we give
a brief review of related work and optimization techniques for the task of net-
work training. In Section 3, we elaborate on the QuickProp algorithm which was
originally introduced in [4]. An evaluation using synthetic and real-world exper-
iments is given in Section 4. A discussion and summary in Section 5 concludes
the paper.

2 Related work

The most related approach to QuickProp is Newton optimization, where the Hes-
sian of the objective function is used for a second-order approximation. However,
computing the Hessian exactly as done in the Newton method is infeasible for
neural networks with more than a few thousand parameters. For example, current
state-of-the-art architectures in the computer vision area usually parameters in
the order of millions [9]. Therefore, Quasi-Newton methods are required approx-
imating the Hessian in a computationally efficient manner. In fact, QuickProp
uses a simple approximation that comes with nearly no additional computational
cost. Other alternative Quasi-Newton methods are reviewed in [13].

To speed up QuickProp even further, the work of [2] magnifies the gradient
of sigmoid activation layers inspired by the technique proposed by [14]. This
method has no effect on the learning with state-of-the-art CNN architectures,
since rectified linear units are used, whose gradients are either zero or one and
can therefore not be exponentially magnified. Another modification is given by
[17,18], where absolute differences of the gradients and former weight changes
are used and multiplied with a tuning parameter η. The authors also show the
convergence of QuickProp for continuously differentiable objectives satisfying
several additional conditions also for the gradients. A comparision of several
optimization algorithms including QuickProp is given by [12], but limited to
standard neural networks with a relatively small number of parameters.

A very common optimization strategy used for training deep neural networks
is gradient descent with momentum as studied in [16]. Similar to QuickProp, mo-
mentum incorporates the change of weights of the previous iteration. However,
this is done in an additive manner, whereas QuickProp performs a multiplica-
tive update and also handles each component of the weight vector independently.
Other methods including AdaDelta [19], AdaGrad [3] and Adam [8] try to im-
prove over gradient descent by estimating a optimal learning rate in each update
step. In contrast, QuickProp assumes the output to be a quadratic function of
each variable and calculates the location of the optimum directly.



3 QuickProp optimization algorithm

Quick Propagation or QuickProp [4] is an iterative second-order optimization
algorithm. The algorithm approximates in each step the objective function with
a quadratic function for each variable independently from the others. In the
case of neural networks, the input variables of the objective functions are the
parameters or weights of the network.
QuickProp optimization step Let E(w) be the error (or loss) function of a
neural network with respect to the parameters w = (w1, w2, . . . , wK). The goal
of training is to minimize E(w) for the training set.
In each iteration, QuickProp determines the new weight w(t+1) given the current
weight w(t) as well as the slope g = ∂E

∂w of the previous and current step.
Gradient descent updates the weights by calculating w(t+1) = w(t)+∆w(t−1) =
w(t) + γ · g(t) with γ ∈ R being the learning rate or step length and g(t) =
∇wE(w(t)) being the gradient of E evaluated at w(t). In QuickProp, each weight
wi is optimized independently and given a selected component i, all weights
except w(t)

i are assumed to be fixed. We therefore assume w to be a scalar w
in the following. To derive an update rule for w(t+1), E is approximated by a
parabola using a second-order Taylor approximation assuming that E is twice
differentiable:

E(w(t+1)) ≈ E(w(t)) + g(t) ·∆w(t) +
1

2
E′′(w(t))

(
∆w(t)

)2

(1)

Whereas this is a standard approximation used by all (Quasi-)Newton methods,
QuickProp now approximates the second derivative E′′ by a finite difference
using w(t) and w(t−1):

E′′(w(t)) ≈ g(t) − g(t−1)

∆w(t−1) (2)

In contrast to the Hessian-free optimization technique presented in [13], this
does not require an additional pass through the network for forward differen-
tiation. However, it savings in computation time come with greater numerical
instabilities that need to be tackled and are further discussed in the next section.
By combining both equations and computing the stationary point of the approx-
imation of E with respect to ∆w(t), we get:

∆w(t) =
g(t)

g(t−1) − g(t)
·∆w(t−1) (3)

which is the update step used by QuickProp. The local parabola approximation
p of QuickProp around w(t) can be therefore expressed by:

p(z) = a · (z − w(t))2 + b · (z − w(t)) + c, where (4)

a =
1

2

g(t) − g(t−1)

∆w(t−1) (5)

b = g(t) (6)

c = E(w(t)) (7)
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Fig. 1. Architecture of convolutional neural networks used for semantic segmentation.

Special cases Instead of adding∆w(t) immediately to the weights, the Quick-
Prop algorithm handles the following three cases separately:

1. The absolute value of the current slope is smaller than the previous
one, but has the same sign: In this case, the new weight is obtained by
adding the delta, i.e. w(t+1) = w(t) +∆w(t). The step ∆w(t) depends on the
difference between the current and previous slope as described in eq. 3.

2. The signs of the slopes differ: The minimum lies between the current
and the previous weight w(t−1)

i and w(t)
i . The update rule from eq. 3 results

in a backwards step because of the different signs.
3. The absolute value of the current slope is larger or equal to the

previous slope: This would result in an infinite step or a step in the wrong
direction. The step size needs to be limited. The author introduces the hy-
perparameter µ, called the “maximum growth factor”. A weight step can
never be larger than µ times the previous step. Steps that are too large or
infinite or in the wrong direction are replaced by µ times the previous step.

To initialize the algorithm, a traditional gradient descent step is taken. Gradient
descent is also used for weights that did not change in an iteration, which would
result in ∆w(t) being 0 for all following time steps.

Implementation details Our implementation follows exactly the work of
Fahlman et al. [4]. To ignite the optimization process or when the gradient
becomes too small, we use a single fixed learning rate gradient descent step. We
set this threshold to 1e−15. The implementation also uses the maximum growth
factor and adds a gradient step if the current and the previous gradient have the
same signs.



4 Experiments

In order to evaluate the QuickProp algorithm in a modern context we use two
datasets of different complexities for the task of semantic segmentation. In this
section, we investigate how QuickProp compares to gradient descent which is the
standard technique for training neural networks. After an introduction of the
datasets and a description of the experimental setup, we analyze the influence
of the network complexity.

4.1 Deep neural networks for semantic segmentation

Our experiments focus on the application of deep neural networks for semantic
segmentation using so-called fully-convolutional neural networks [11]. The goal
of semantic segmentation is to classify each pixel of a given image into one of
K semantic categories. Fig. 1 shows the basic principle of the architecture of
a CNN used for this task. The input of the network is a given image and the
output is a score for each class and pixel. The index of the maximum score then
corresponds to the semantic class assigned to the pixel.
The network is comprised of different layers, mainly (a) convolutional layers, (b)
pooling layers, (c) up-sampling layers, and (d) non-linear activation layers. Since
we do not focus on the application of semantic segmentation in our paper but
rather on efficient optimization techniques for learning, we refer the interested
reader to [1,11] for more details.

4.2 Experimental setup

In order to evaluate the performance of the optimization techniques for semantic
segmentation tasks, we report typical quantitative measures in this field of re-
search. With respect to the semantic labeling of pixels we follow [1] in measuring
the performance using the overall accuracy and mean class-wise accuracy. Fur-
thermore, we analyze the different optimization methods using the output of the
quadratic loss function. More specifically, the reported loss in our experiments
is the per pixel error averaged over all pixels of all examples and weighting up-
dates. Additionally, all results shown in this section are averaged over several
runs allowing for a more robust evaluation of the used techniques.

4.3 Datasets

For our experimental evaluation we used the following datasets which have dif-
ferentrequirements on the type and complexity of the network architecture.
T.O.Y. dataset In order to analyze the performance for varying settings we
created a small artificial dataset serving as a working example. This so-called
T.O.Y. dataset consists of only a single image with two foreground classes and
one background class. It is designed to be easy to solve even for a tiny network.
The training image and its corresponding labeling is depicted in Fig. 2.



Fig. 2. Datasets used in our experiments: A simple three class scenario in the T.O.Y.
dataset (left) and a multi-class setting of urban scenes in the LabelMeFacade dataset
[5] (right). Depicted are both input image and the corresponding ground truth labeling
as color coding.

The T.O.Y. dataset allows for the verification whether QuickProp yields rea-
sonable solutions because the classes are differentiable by basic filter masks. A
second advantage of this dataset is the small size. There is a trend to publish
the results of just a single random initialization of a CNN, especially in competi-
tive settings. However, analyzing the distribution over many repetitions provides
results with statistical significance.
LabelMeFacade The second dataset we use in our experimental evaluation
is LabelMeFacade [5] which consists of 945 images taken from urban scenes.
It contains ground truth labels for eight classes: building, road, pavement, sky,
vegetation, window and door. Additionally, there exists a background class which
can be used to exclude undefined areas from the evaluation. Fig. 2 shows an
example containing all labeled classes with their corresponding color coding.
In our evaluation we follow [5] and split the dataset into 845 images for testing
and 100 images for training. For model selection and tuning of hyperparameters,
we split the 100 training images again into 50 images each for training and 50
images for validation.

4.4 Comparison of QuickProp and gradient descent

T.O.Y. dataset We train a network 200 times from scratch with different
random initializations. The training is stopped after 30 “epochs” of 10.000 itera-
tions each and one image per iteration. The CNN architecture is a simple 2-layer
CNN. One convolutional layer with two filter masks are followed by output neu-
rons and hence corresponds to a simple template matching approach. The input
to the network is exactly as large as the filters in the first layer. A quadratic loss
is used in order to match the assumptions of QuickProp as close as possible.
In Fig. 3 we show how the loss is decreasing during training and subsequent test-
ing of the networks after each epoch. It can be seen that in training QuickProp
is outperformed by gradient descent. The results during testing, however, are
inverted with respect to the reported loss. This behavior is interesting, since it
suggests a better generalization ability of the network which was trained using
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Fig. 3. Quantitative analysis using the T.O.Y. dataset: during training the loss using
QuickProp is substantially worse than with gradient descent (left). However, during
testing the relationship is inverted (right).

QuickProp. However, the visual variety of the T.O.Y. dataset is very small and
hence a general statement is not possible.
The overall accuracy of the learned networks during testing was comparable. It
saturated at 78% for both the gradient descent and the QuickProp approach
after a few epochs. In contrast, the mean class-wise accuracy for QuickProp
was significantly worse compared to the standard learning approach. While the
gradient descent technique saturated at 62% after five epochs, QuickProp never
rised above 41%.

LabelMeFacade dataset The architecture used for this set of experiments
consists of three convolutional layers and two fully connected layers. Since we
are using a fully convolutional setting the fully connected layers are also con-
voltional layers of kernel size 1× 1 [11]. Each convolutional layer is followed by
subsequent non-linearity layer. While the last non-linear layer is Sigmoid, the
remaining activation functions are Tanh. We trained CNNs for ten epochs for
each optimization method. The training process is repeated ten times.
Fig. 4 shows the loss over time during training as well as the accuracy during
training and testing. As can be seen, QuickProp performs worse than gradient
descent in this scenario. For each training epoch the error rates of Quickprop
are higher and the resulting accuracy is up to five percent points below gradi-
ent descent. The reported accuracy for QuickProp during testing is also worse.
Additionally, an increase in variance of the results can be observed.
In comparison to earlier experiments, the results for testing do not support the
findings of the T.O.Y. experiments with respect to the generalization ability.
However, it is worth noting that the LabelMeFacade dataset iFs in general more
complex than the T.O.Y. dataset. While the latter is a simple binary classifica-
tion task the former features a multi-class setting with a high variety of visual
representations for the classes. As a consequence, the network in use was of
higher complexity than the one for the T.O.Y. dataset. In order to investigate
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Fig. 4. Quantitative analysis using LabelMeFacade: During training and testing gra-
dient descent achieves better results than QuickProp.

whether the architecture of the CNN plays a defining role in the performance of
QuickProp we ran a second series of experiments on LabelMeFacade.

4.5 Network complexity analysis

The models studied so far range from a very simple network of only 109 pa-
rameters for the T.O.Y. dataset up to networks featuring more than 100.000
weights for LabelMeFacade. In this set of experiments we evaluate if the model
complexity relates to the performance of the different training schemes. We pro-
pose two scalable network architectures based on the initial model we used for
the LabelMeFacade experiments. The first analysis features a variable count of
filters in a specific layer. After that, the network is modified in a way to enable
a variable amount of layers.
Scaling the amount of filters First, we vary the number of filters in the
second convolutional and the first fully connected layer. Both layers are linearly
dependent on a variable k, using k filters for convolution and 12 · k neurons in
the fully connected layer. Accordingly, the total amount of parameters |w| in the
networks can then be expressed in terms of k as |w| = 2473 + 4497 · k. In order
to evaluate the influence of differently sized networks we train and test CNNs
on the LabelMeFacade dataset for k ∈ {2, 7, 12, . . . , 22}.
In Fig. 5 we report the loss reached for networks of increasing size. As before,
we compare networks trained using gradient descent and QuickProp. For each k
the CNNs were learned for 100 epochs. Since the training took a very long time,
we were only able to repeat the training once for each setup.
As can be seen from the results in Fig. 5, the loss during training for QuickProp
is higher than using GD for almost all cases. Interestingly, the loss for the case
k = 2 is the same for all runs. However, a general increase of the gap between
both methods is visible for more complex networks. This supports the findings
that QuickProp performs better for smaller networks in this application.
Scaling the amount of layers Another way of increasing the complexity
of CNNs is to add more layers to its architecture. In order to achieve a linear
growth in weights, we suggest to repeat the first fully connected layer with 192
kernels l times. As this layer is in fact a convolutional layer of size 1 × 1, the
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Fig. 5. Scaling the amount of filters per layer to increase network complexity:

total amount of parameters in the networks computes as |w| = 56437 + l, with
l ∈ {0, 1, . . . , 5} being a linear scaling parameter. Experiments were conducted
for a step-wise increased l and we compared the same optimization methods
as before. We repeated each experimental setup once and report both runs in
Fig. 6.
Similar to our earlier experiments, QuickProp performs worse when compared to
the standard technique gradient descent. However, in comparison to the scaling
of the amount of filters, the gap between the performance of both methods is
not increasing. On the contrary, results during testing show a decreasing gap.
However, it is worth noting that a simple repetition of the first fully connected
layer seems to be unreasonable. For an increasing l the loss is getting worse and
for l > 2 stays constant in our series of experiments. Also note, that without
losing performance the first fully connected layer can be skipped altogether (l =
0). This might be due to the fully convolutional character of our network.

5 Conclusions

In this technical report, we evaluated QuickProp as an iterative second-order
optimization algorithm for the training of convolutional neural networks. We
conducted experiments for the task of semantic segmentation using a fully con-
volutional network configuration.
For an inital evaluation, a simple toy example as well was used allowing a high
amount of repetitions of the experiments in order to retrieve results of statis-
tical significance. While the QuickProp algorithm showed a higher loss during
training, the performance during testing was superior to a network trained using
gradient descent.
However, for a real-world scenario using a dataset consisting of urban street
sceens, the standard approach of gradient descent still performs significantly
better. In order to investigate a possible relationship between the size and com-
plexity of networks to be trained and the performance of optimization techniques,
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Fig. 6. Scaling the amount of layers to increase network complexity:

we ran scaling experiments of two different types. The series of experiments for
a scalable amount of filter kernels in selected layers showed a degrading perfor-
mance of QuickProp for larger networks when compared to gradient descent.
In general, improved second-order optimization approaches, like QuickProp, can
help in speeding up the training process and finding a better optimum. However,
these cases seem to be rare and do not include practical scenarios featuring
convolutional neural networks. Since the models of recently propsed networks for
computer vision task become larger, we can not recommend to use QuickProp
without modifications in contemporary architectures and tasks.
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