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Abstract—Multi-object tracking is still a challenging task in
computer vision. We propose a robust approach to realize
multi-object tracking using multi-camera networks. Detection
algorithms are utilized to detect object regions with confidence
scores for initialization of individual particle filters. Since data
association is the key issue in Tracking-by-Detection mechanism,
we present an efficient greedy matching algorithm considering
multiple judgments based on likelihood functions. Furthermore,
tracking in single cameras is realized by a greedy matching
method. Afterwards, 3D geometry positions are obtained from
the triangulation relationship between cameras. Corresponding
objects are tracked in multiple cameras to take the advantages of
multi-camera based tracking. Our algorithm performs online and
does not need any information about the scene, no restrictions of
enter-and-exit zones, no assumption of areas where objects are
moving on and can be extended to any class of object tracking.
Experimental results show the benefits of using multiple cameras
by the higher accuracy and precision rates.

I. INTRODUCTION

Multi-object tracking has a variety of applications in the
field of computer vision, e. g. surveillance, motion analysis,
action recognition, etc. Normally, it is quite easy and intuitive
for humans to see objects or recognize their actions. However,
to establish an automatic system without any intervention by
humans is very challenging. Lot of work was done towards
this goal. A part of the researches is based on pre-defined
restrictions on the special application or scenarios. Common
restrictions are the assumption of a flat world where the objects
are moving on [1], [2], [3], [4], the existence of enter-and-
exit zones where new objects can appear or disappear [1], [3]
or a trained classifier that estimates the foreground objects
beforehand [1], [4], [5], [6].

Difficulties in multi-object tracking occur when the objects
are occluded for a period of time, when they are far away
from the observing sensor or if their appearances are quite
similar. Lacking of obtained data, single-camera based object
tracking may suffer from insufficient information for robust
performance. Object tracking in multi-camera systems seems
to be a promising trend. With multiple cameras observing
the scene, one object that is visible in several cameras can
be better handled by the more complete representing model.
However, additional challenges arose of how to efficiently fuse
the information from multiple cameras, since one camera can
not contribute to tracking all the time in the same way.

We intend to realize multi-object tracking in multi-camera
systems without the stated restrictions using a general Tracking-
by-Detection-based framework. With the output of object
detectors, individual trackers can be initialized automatically.
We aim to show that robust multi-object tracking in multi-
camera systems is possible by solely using image information
and the calibration data. Additionally, the performance of
tracking can be improved in a large extend by utilizing a
calibrated multi-camera system. We focus mainly on the data
association algorithm through the whole system.

The remainder is organized as follows: after giving a brief
overview about related work, the outline of our algorithm
will be presented in Sect. I-B. Afterwards, each part of our
algorithm will be discussed in Sect. II. In Sect. III, details about
the experiments and quantitative analysis will be shown. Finally,
we will conclude and give a brief outlook.

A. Related Work

Tracking is the process of finding the corresponding regions
of the object in consecutive frames. In essence, tracking is to
associate the data representing an object in each time step. Data
association is evidently the key issue in tracking approaches.

Detectors, e. g. for localizing humans as proposed by Dalal
et al. [7] or Felzenszwalb et al. [8], can provide hypotheses of
discrete object regions in separate images. Normally, these
detectors contain a large amount of missing detections and
false positives, which increases the difficulty of detection-based
data association in a large extend.

There are many researches on data association in object
tracking algorithms. Some approaches utilize the evaluation of
a probabilistic state space. The association might be realized
by a Bayesian association as proposed by Mohedano et al. [2],
while it can also be performed by updating particle filters that
represent the tracked objects as shown by Kim et al. [4] or
more recently by Taj et al. [9].

Furthermore, there are several approaches to associate data
by solving underlying optimization problems. As shown by
Huang et al. [3], association can be done hierarchically based
on three association steps—low-level, mid-level and high-level—
where a maximum a-posteriori estimation problem is solved
iteratively and an Expectation-Maximization-like algorithm
leads to the final output. This approach was recently used
by Henrique et al. [5] for formulating the association task



Algorithm 1 Multi-camera multi-object tracking.
Input:
• multi-camera system C = {c1, . . . , cM}

1: for every time step t do
2: Dt

C ← detections(C, t)
3: for every camera c ∈ C do
4: τ tc ← single-camera-tracking(c,Dft ,T t−1

c )
5: end for
6: T t =

⋃
c∈C

τ tc

7: Tt ← multi-camera-tracking(C,T t,Tt−1)
8: end for
9: Output: Tt

as a global optimization problem, which bases on the mid-
level association of the hierarchical association approach.
Additionally, Andriyenko et al. [10] proposed a continuous
energy minimization algorithm to obtain robust tracking results.

Matching is another approach widely used for data asso-
ciation. Berclaz et al. [1] used the output of object detectors
to create Probabilistic Occupancy Maps (POM) to estimate
the maximum number of objects and their locations, which
are further used for association by graph matching. Another
approach that uses matching was presented by Rudakova
et al. [11], where the matching operates on bipartite graphs.
Matching can be used directly to relate the features of an
object with the most likely ones over time as presented by
Andersen et al. [12]. The matched features can also be used for
tracking with an online classifier as shown by Stalder et al. [13].

Traditional assignment algorithms like the Hungarian Algo-
rithm introduced by Kuhn [14] can be used to find an optimal
single-frame assignment [15]. However, good tracking results
in single cameras have been shown in [15], where a greedy
matching strategy was used for data association. It can be seen
that greedy matching algorithms achieve equivalent results to
the Hungarian Algorithm but at lower computational complexity.
Therefore, we also perform such a greedy matching algorithm
for data association.

B. Algorithm Outline

The overview of the algorithm is presented in Alg. 1. For
each new frame f tcj captured by camera cj at time step t,
the previous trackers, the current image information and the
calibration information of the multi-camera network are used
for tracking. It starts with object detection in each camera
image frame f tcj individually. Afterwards, 2D object tracking
is performed to obtain a set T cj of 2D trackers for each frame
from camera cj . The 2D trackers are then further associated
with each other to gain global 3D trackers Tt for all the
cameras. Finally, the outputs are represented in 2D image
space. The framework is general, without any restrictions as in
other methods we mentioned before. The details of our single-
camera and multi-camera tracking algorithms are presented in
the following sections.

Algorithm 2 Tracking in Single Cameras.
Input:
• calibrated camera c ∈ C
• list of detections Dt

c = {dt1, . . . , dtK}
• previous list of 2D trackers T t−1 = {τ t−1

1 , . . . , τ t−1
L }

1: for every τ t−1 ∈ T t−1 do
2: state prediction by particle filters
3: end for
4: T t ← greedy matching(τ t−1,Dt

c) using Lsingle
5: for every τ t ∈ T t do
6: if τ t does not represent a new object then
7: update the associated tracker and excute online classifier
8: end if
9: end for

10: Output: T t

II. METHODOLOGY

A. Tracking-by-Detection in Single Cameras

Since reliable object tracking in single camera views is a
basis for object tracking in multi-camera systems, we consider
this aspect first. Particle filters aim to represent hypotheses of
object states by a set of particles weighted by an importance
factor between the candidate model and the target model, which
shows good performance in object tracking area. [16] Thus,
particle filters are used in our framework to represent object
trackers in single cameras. The state of an object includes the
object position, velocity and size in 2D image space. Details
of 2D tracking in single cameras are outlined in Alg. 2.

As shown in Alg. 3, the greedy matching algorithm we
applied during single-camera Tracking-by-Detection is similar
to the one proposed in [15]. The main differences are firstly,
we use the associated detections to update the target model
for the corresponding trackers to handle object appearance
changes over time. This depends on the detections and is
independent from object positions in the image. Therefore,
there is no estimation or knowledge about enter-and-exit zones
in the images, which increases the generality of our approach.
Secondly, we reformulate the likelihood function

Lsingle(d, τ) =αHSV · LHSV(d, τ) + αpos · Lpos(d, τ) + (1)
αsize · Lsize(d, τ) + αclass · Lclass(d, τ),

for weighting the possible matches of recent trackers τ and
new detections d from a single view. It is composed by
three different sources which are fused similar to democratic
integration [17]:
• LHSV(d, τ) computes the Bhattacharyya distance of the

hue-saturation-value (HSV) histograms of d and τ ,
• Lpos(d, τ) evaluates the euclidean distance of the position

of d and the predicted position of τ according to the last
velocity,

• Lsize(d, τ) calculates the ratio of the sizes of their bound-
ing rectangles and

• Lclass(d, τ) is the result of the boosted online classifier
[18] of τ on detection d.

The α* values are the corresponding weights and normalized
to sum up to 1. Note that the value domain of the likelihood



Algorithm 3 Greedy matching.
Input:
• bipartite graph G = (V ,E)
• vertices V = V 1 ∪ V 2, |V 1| = n, |V 2| = m
• 6 ∃e = (vi, vj) ∈ E : vi ∈ V 1∧j ∈ V 2

1: define weighting matrix M ∈ Rn×m

2: mi,j := L(vi, vj), vi ∈ V 1, vj ∈ V 2

3: Sort M descendingly
4: while (rows(M) > 0) do
5: (i∗, j∗) = position(max-element(M))
6: link vi∗ , vj∗ , delete row i∗, delete column j∗

7: end while

is [0, 1], where L(d, τ) = 0 if the considered pair is not a
corresponding match and L(d, τ) = 1 if it is a definitely
matching pair.

After matching current detections with previous trackers, the
object models of particle filters are updated by the associated
detections and the online classifier is extended by the newly
associated detections meanwhile as shown in Fig. 2.

The result of object Tracking-by-Detection based on single
camera views is a set of 2D trackers of all cameras. To increase
the robustness and perform accurate tracking especially during
occlusions, we associate the trackers from different cameras
to have global efficiency by estimating the 3D positions of the
objects.

B. Data Association in Multi-Camera Systems

For the sake of computation costs, we only consider the
trackers from single-camera tracking from all cameras instead
of operating on all camera images directly. The aim is to
associate each tracker from one camera with up to one tracker
from other cameras. We use the greedy matching algorithm
introduced in the previous section for associating the trackers
accross multiple cameras. Our proposed algorithm for object
tracking in multi-camera systems based on object tracking in
single cameras is firmly drafted in Alg. 4.

Assume that we have a set of previous 3D trackers Tt−1.
For each 3D tracker T t−1 ∈ Tt−1, there is a set of previously
assigned 2D trackers T t−1 with up to one tracker per camera. If
at least two trackers τi, τj ∈ T t−1 have been updated during
single-camera tracking, T t in 3D space can be updated by
estimating the 3D position

pT t =

∑
τi,τj∈T t,τi 6=τj

triangulate (τi, τj)

card
(
T t
) (2)

which is the centroid of all the 3D positions from assigned
tracker pairs obtained by the triangulation relationship between
two cameras [19]. Afterwards, we back-project the 3D positions
of each 3D tracker T t into each camera c that has no 2D tracker
assigned to it. If this projection is within a bounding region
of a 2D tracker τj , the minimal likelihood Lmin of τj and the
2D trackers that are assigned to T t is computed. Finally, τj is
assigned to T t if Lmin > θbp holds. Therefore, lost 2D trackers
are re-assigned to T t, while new 2D trackers in cameras that
could not observe the objects before are newly assigned to

Algorithm 4 Tracking in multi-camera systems.
Input:
• multi-camera system C = {c1, . . . , cM}
• list of all 2d-trackers in each camera T t

C = {T t
c1 , . . . ,T

t
cM }

• previous list of 3d-trackers Tt−1

1: for T t−1 ∈ Tt−1 do
2: if (∀τ ∈ T t

ci ∈ T t
C : tracker τ was assigned to T t−1) then

3: update T t−1 and delete τ from T t
ci

4: else
5: delete T t−1 from Tt−1

6: end if
7: end for
8: Tt ← Tt−1 ∪ greedy-matching(T t

C ,T t
C) using Lmulti

9: Output: Tt

T t. Each updated 3D tracker T t is added to the current set of
trackers Tt and the assigned 2D trackers are not considered
in the following matching process.

Afterwards, the unassigned 2D trackers from each camera
are associated to new 3D trackers by the greedy matching
algorithm. The assignment between the two 2D trackers τi and
τj depends on the likelihood function

Lmulti(τi, τj) =


αepi · Lepi(τi, τj)+

αHSV · LHSV(τi, τj) ck 6= cl

0 ck = cl

, (3)

where τi is a tracker from camera ck, τj is a tracker from
camera cl and the α* values are the corresponding weights.
Here, the atomic likelihood functions are defined as
• Lepi(τi, τj) evaluates the Euclidean distance of τi to the

epipolar line induced by τj ,
• LHSV(τi, τj) computes the Bhattacharyya distance be-

tween the HSV color histogram of τi and τj .
Again, the value domain of these functions is normalized to

[0, 1], where Lmulti(τi, τj) = 0 if τi and τj do not correspond
and Lmulti(τi, τj) = 1 if the correspondence of τi and τj is
evident. A 2D tracker pair κi,j = (τi, τj) is only matched if
its Lmulti(τi, τj) > θmin.

The accuracy of camera calibration has a high impact
on the likelihood function Lepi, since it depends on the
epipolar geometry between two cameras. The more reliable the
calibration is, the higher the influence of Lepi in Lmulti might be.
We also consider situations where multiple objects are near to
one corresponding epipolar line of an object in another camera,
as presented in Fig. 1. The use of such a HSV histogram based
likelihood function LHSV is promising to evaluate the likelihood
of the two trackers that may be matched, which has shown a
good performance in our experiments.

Therefore, for each matched pair of 2D trackers κti,j =
(τi, τj), we define a new 3D tracker T t and assign τi and τj to
it. Afterwards, we project the 3D position of T t back into the
cameras that have no 2D trackers assigned to T t in order to
add missing 2D trackers if possible. Each T t is finally added
to the current set Tt. The process iterates over every frame in
the sequence.



(a) source image (view 001) (b) corresponding image (view 003)

Figure 1: Multiple candidates near the red epipolar line in (b)
for the query object (white rectangle in (a)).

Table I: Evaluation results of single-camera object tracking

Parameter Evaluation

αclass MOTA MOTP FP IDS FN PRE REC

0.0 0.78 0.88 123 125 782 0.97 0.83
0.1 0.80 0.85 421 142 388 0.91 0.92

III. EXPERIMENTS

A. Dataset

Since there are not many suitable datasets for multi-object
tracking in multi-camera systems and PETS’09 [20] dataset is
sufficient and challenging, we tested our algorithm on the this
dataset for evaluation. PETS’09 contains many scenes with
occlusions and variations in the camera images, such as the
distance of the objects to the cameras, illuminations in the
images and the camera resolutions. Furthermore, this dataset
has been used to evaluate different state-of-the-art approaches,
which enables us to compare our method with them.

PETS’09 offers three types of applications: person counting
and density estimation, people tracking and flow analysis
and event recognition. We use the scene S2.L1 walking
that includes 795 frames and about 7 f/s for each of the 7
cameras. Together with the images, PETS’09 offers the camera
calibration parameters. Since they did not offer ground truth
data, we use the manually labeled ground truth data for the
first camera provided by [10].

B. Evaluation Metric

We utlize the CLEAR MOT metrics [21] for evaluating the
tracking results. They define the multi-object tracking accuracy
(MOTA) to consider the number of false positives (FP), false
negatives/missing detections (FN) and identity switches (IDS).
Besides, multi-object tracking precision (MOTP) is used for
evaluating the precision of localization of targets. For further
details about the evaluation parameters we refer to [21]. The
evaluation program is provided by [10].

C. Quantitative Analysis

For all following experiments, we directly use the camera
calibration data provided by PETS’09 dataset. We do not
implement any preprocessing, such as learning the foreground
of the expected scene or training the detectors specially for the

(a) Frame 020 (b) Frame 258

Figure 2: Examplary results for 2D tracking with online-learnt
re-classification of the tracking targets.

Table II: Evaluation of tracking in multi-camera systems.

Detector Evaluation

MOTA MOTP FP IDS FN PRE REC

HOG 0.65 0.82 1088 121 416 0.80 0.91
PBM 0.75 0.85 201 106 858 0.95 0.82

HOG+PBM 0.61 0.86 1448 216 168 0.76 0.96

used data. We use Histograms of Oriented Gradients (HOG) [7]
and Part-Based Appearance Models (PBM) [8] as human body
detectors. Parameters used in the experiments are αHSV = 0.1,
αpos = 0.4, αsize = 0.2 for Lsingle αHSV = 0.25, αepi = 0.75
for Lmulti.

We start with the evaluation of the implemented single-
camera Tracking-by-Detection as it is the basis for the whole
object tracking system. To figure out the influence of the online
classifier, we evaluate the tracking results with and without
using classifiers as presented in Tab. I.

As one can see, the single-camera multi-object tracking is
robust. However, there are a lot of id switches. One reason for
the high number of missed objects in single-camera tracking is
that there is no handling of occlusion. Furthermore, the usage of
online classifiers decreases the probability that a tracker loses its
target. Therefore, the number of missing objects (FN) increases
(+102%) when we track without using online classifiers. In
addition, MOTP is higher probably because there are more
situations when an object is assigned to a newly created tracker,
while improve MOTA as the trackers renew the localization of
the targets.

Tab. II presents the results of object tracking in multi-camera
systems, while several intuitive results are shown in Fig. 3.
Occlusions are handled relying on the assumption that the
occluded objects in some views are not occluded in at least
two other cameras. To show the strong dependency of the
performance of the detectors, we also evaluate the results using
different detectors separately.

Note that the combination of both detectors at the same time
reduces the number of missed objects a lot, since there are
long periods with almost no detections using one individual
detector. However, it suffers from a higher number of false
alarms. An additional handling of false positive trackers could
increase the overall performance. Furthermore, we can see



Table III: Result of multi-camera multi-object tracking, where
2D trackers are added, if not assigned to a 3D tracker.

Evaluation

MOTA MOTP FP IDS FN PRE REC

without fusion 0.57 0.81 1600 154 249 0.73 0.95
with fusion 0.49 0.85 2119 186 71 0.75 0.97

(a) Frame 023 (b) Frame 258

(c) Frame 023 (d) Frame 258

Figure 3: Exemplary results for 3D tracking: (a) and (b) without
re-classification, (c) and (d) with re-classification

that MOTA increases when using the PBM detector since it
decreases the number of false alarms, although there are more
missing objects.

The Location of the objects can be obtained by 2D trackers
or the back projected positions from the 3D trackers. We
evaluate the results from 3D trackers with and without fusing
the tracking results from 2D trackers as presented in in Tab. III.
It can be seen that the combination of the two trackers reduces
the number of missing objects by (−71.5%). Simultaneously,
the number of false alarms (+32.4%) and id switches (+21.8%)
increase because there are also false 2D trackers added to 3D
trackers.

It still remains to be seen how robust our approach is in
comparison to other approaches.

D. Comparison

As we might use ground truth data different from those that
are used by other approaches, the results of our experiments
can not be directly compared to them. However, since the data
is similar, the comparison presented in Tab. IV at least offers
tendencies for the robustness of different approaches.

The approach of Henriques et al. [5] has the highest MOTA,
percentage of detected and percentage of correctly detected
objects. A reason for the high accuracy could be the usage of
an optimization method for tracking over time. Furthermore,

Table IV: Evaluation results of our proposed multi-object
tracking methods compared to other approaches.

Approach Evaluation

MOTA MOTP IDS Prec Rec

Henriques et al. [5] (offline) 0.966 n/a 10 0.985 0.986

Berclaz et al. [1] 0.760 0.630 n/a n/a n/a
Andriyenko et al. [10] 0.814 0.761 15 n/a n/a
Breitenstein et al. [15] 0.797 0.563 n/a n/a n/a
Yang et al. [22] 0.759 0.538 n/a n/a n/a

our single-camera approach 0.795 0.846 142 0.910 0.916
our multi-camera approach 0.749 0.854 106 0.949 0.815

optimization increases the percentage of correctly detected
objects as they only need to consider objects that can be tracked
for some time steps. However, their approach is only applicable
to offline tracking scenarios, while our approach could also be
used online. According to the accuracy parameters, both our
approaches are competitive with other single-camera based
tracking approaches like [15]. We can outperform others
regarding the value of MOTP, which may be influenced by
the usage of detectors and particle filters. Compared to the
single-camera tracking by continuous energy minimization
[10], we see that our approach has a higher MOTP but a lower
MOTA value. Their accuracy might benefit from optimization
algorithms, which reduces the number of id switches. They
may also suffer from lower accuracy by not using detections
for object localization. Besides, our approach suffers from a
higher number of id switches.

We also compare our approaches with multi-camera based
methods, such as Berclaz et al. [1] and Yang et al. [22]. Their
algorithms have lower MOTPs in PETS’09 than ours, while
we localize the objects more accurate using detectors and
particle filters than their optimization on segmentation-based
POMs. Furthermore, both approaches have higher accuracy
(MOTA) than our approach. One reason for this might be the
high number of false alarms in our experiments, as mentioned
before.

E. Run-time Performance

The system is implemented in C++ using the classification
framework of Stalder et al. [13] and the open-source library
OpenCV. All experiments implemented on one single core
of a Intel Core2QuadTM CPU with 2.4 GHz and 8 GB of
memory. In average, the runtime for the first 50 frames in
the first camera is 2.98 s/f with and 2.52 s/f without using
online classifiers. If we consider when new trackers are created
and online classifiers are trained, the runtime for the single-
camera tracking increases to 8.2 s/f. The average runtime of the
multi-camera multi-object tracking system is 38.0 s/f with and
36.6 s/f without the usage of online classifiers in single-camera
tracking. Note that the system performs tracking in each camera
without any parallelism. In addition to that, the calculation
of the likelihood values is not using parallel computing as
well. Therefore, the runtime could decrease a lot by doing the



single-camera tracking of all cameras simultaneously and by
parallel computing of the likelihood values for the multi-camera
tracking. However, the runtime of the single-camera approach
of [15], 0.5−2.5 s/f without considering the time for detection,
is lower than ours. Unfortunately, Henriques et al. [5] did not
report runtimes for their offline multi-camera approach.

IV. CONCLUSION

A. Summary

We presented an approach for multi-object tracking in multi-
camera systems in this paper. In contrast to our proposed
method, many multi-object tracking approaches rely on a
variety of constraints, which reduces their applicability. A
common restriction is the assumption, that all the tracked
objects are moving on a flat ground plane. Approaches that
use this restriction could fail on scenarios where objects can
move on uneven terrain, for example when tracking people
in multi-decked supermarkets. Some other approaches use a
foreground segmentation for detecting objects, which requires
a trained classifier and special knowledge about the expected
scene. Besides this, some approaches utilize known enter and
exit zones in the scene to fix problems with suddenly appearing
or disappearing objects, which could fail when tracking objects
in a wide area.

However, we introduced an object-tracking framework
without using these restrictions to realize robust multi-object
tracking in multi-camera systems. It bases on a single-camera
Tracking-by-Detection algorithm by associating data according
to a greedy matching algorithm in each camera. This reduces
the complexity while its expected results are comparable with
the Hungarian Algorithm that finds an optimal matching. Fur-
thermore, the matching-based algorithm can be easily extended
by defining likelihood functions that represent relationships
between the objects to be matched. It was further extended
by a likelihood function that evaluates the distance to the
epipolar line of one object in the camera of another object.
Finally, we evaluated our proposed method and compared
it to other state-of-the-art approaches. We showed that our
single-camera tracking can compete with the approach of [15],
which also uses a data association technique based on greedy
matching. We see that our approach, especially in the case of
multi-camera tracking, suffers from a high number of false
alarms, which could be caused by illumination changes of the
images from different cameras. Hence, the multi-object tracking
accuracy of our approach is worse compared to some other
multi-camera tracking approaches, such as [1], [22]. However,
the multi-object tracking precision, the percentage of detected
objects and the percentage of correctly detected objects of
our approach is high. Considering object tracking precision,
we can even outperform the mentioned tracking approaches.
Most importantly, our framework is general and can easily be
extended to other applications.

B. Outlook

It remains an open question, whether our approach could
run in realtime by parallely runing the single-camera tracking

and the calculation of the likelihood functions for matching
between different cameras. Besides this, it is promising to
extend our approach by an EM-like strategy to estimate the best
set of parameters, such as the weights for the used likelihood
functions. Furthermore, as our approach does not use any
restrictions beside the camera calibration information, it would
be interesting to compare the results to other approaches on
a dataset where objects can move up and down. More robust
algorithm during occlusion would be a further research direction
for us. Additionally, we plan to record such dataset for testing
since there are currently no other suitable datasets for evaluating
multi-object tracking approaches in such scenarios.
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