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Abstract: Due to shrinking habitats, moth populations are declining rapidly. An automated moth
population monitoring tool is needed to support conservationists in making informed decisions for
counteracting this trend. A non-invasive tool would involve the automatic classification of images of
moths, a fine-grained recognition problem. Currently, the lack of images annotated by experts is the
main hindrance to such a classification model. To understand how to achieve acceptable predictive
accuracies, we investigate the effect of differently sized datasets and data acquired from the Internet.
We find the use of web data immensely beneficial and observe that few images from the evaluation
domain are enough to mitigate the domain shift in web data. Our experiments show that counteracting
the domain shift may yield a relative reduction of the error rate of over 60%. Lastly, the effect of label
noise in web data and proposed filtering techniques are analyzed and evaluated.
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1 Introduction

As our environment and climate changes, habitats are destroyed, leading to a decline in
plant and animal biodiversity. To effectively combat this loss of species on our planet,
monitoring these trends and understanding the reasons is paramount. Moths seem to be
especially sensitive to the changes in the environment, as they are affected by an extremely
rapid decline in population sizes. While the overall declining trend is undeniable, evidence
suggests the situation is complex and heterogeneous for differing species [Wa21, Ha19]. In
this work, we analyze different aspects of visual moth species classification to support the
continuous monitoring of populations with minimally invasive methods. A clear picture
of population changes for specific moth species could help biologists and conservationists
make informed decisions to counteract this problem. A moth species classification system
is developed as part of the biodiversity monitoring stations in the AMMOD project7, where
it is referred to as the moth scanner. The hardware setup consists of a light trap that attracts
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moths using ultraviolet light to illuminate a white screen and a camera regularly taking
images of this screen during the night. To automatically analyze the vast amount of recorded
images, especially when multiple stations are in operation across the country, the software
components of the monitoring system require a classification model for identifying different
moth species. Although there are most likely many insects in a single image that need
to be localized to classify each individual separately, we only focus on the moth species
classification in this paper.

The main challenge for training a good species classifier is the availability of a large training
dataset with many example images for each individual species. This especially holds when
considering modern deep neural networks with their large number of parameters. In addition,
not only the plain images of moths are important but also the appropriate species labels,
which can often only be provided by few experts with a corresponding background in
taxonomy and systematics. This leads to different annotation conditions as for other visual
object recognition tasks, such as the distinction of cars from motorcycles, for which most
humans could provide class labels. Note that the previous challenges are relevant for most
species classification problems if very similar animals need to be distinguished by small
details to obtain the correct label, but they are especially important when considering a
certain niche such as moths.

While, in general, citizen science applications or other crowd-sourcing activities are useful
to collect additional training data, their benefit is limited when expert knowledge is required
for image annotations. An active learning approach is more suited in this situation, where
an expert labels images selected by a classification model. With this approach, only a small
relevant subset of the raw data is labeled such that the expensive manual effort by experts
is reduced. However, an initial small training dataset is needed to build an acceptable
classification model that selects the images for labeling [Kä16].

To improve our understanding of the required size of a dataset for acceptable performance,
we analyze how the number of images used for training affects the performance of a
classification model. We use image search engines to acquire a large dataset from the
Internet and analyze different aspects of the use of web data, such as the domain shift,
for example. A domain shift refers to the differing data distributions in the training and
evaluation data, which is expected when acquiring training data from the Internet. We
compare a webly-supervised approach, where only web data is used for training, with a
semi-supervised approach, where cleanly labeled data and web data together form a merged
training dataset.

Because the images retrieved from the Internet using image search engines are weakly
labeled through tags and text content surrounding the images, the downloaded data contains
label noise. As identified by Krause et al. [Kr16], who showed the potential of noisy data
from the Internet for fine-grained recognition, there are two different types of label noise
that can be differentiated with the definition of the dataset domain. All categories in a
fine-grained dataset are sub-categories of a larger umbrella category, which is called the
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domain of the dataset. In our study, we focus on species identification for moth images, and
hence, the domain of the dataset we are using is moths. Another example is the CUB200-
2011-dataset [Wa11] containing images of 200 different bird species, for which the domain
would be birds. Using this definition, we can differentiate between within-domain label
noise, called cross-class noise, and out-of-domain label noise, also called cross-domain
noise. Usually, when using images from the Internet, the overlap between the evaluation
dataset and web data needs to be eliminated to ensure a fair and robust evaluation. Because
the evaluation dataset used in this paper is not publicly available, this aspect of using
web data is not relevant here. However, the interested reader is referred to our previous
work [Bö21] that addresses this issue.

Lastly, we want to analyze how filtering label noise in a preprocessing step affects
classification performance. To handle cross-class noise, Krause et al. [Kr16] removed exact
duplicates between different classes in the web data because their true label is ambiguous.
We expand on this approach by considering near duplicates with our duplicate detection
method. Also, we evaluate our previously proposed methods [Bö21] for cross-domain noise
filtering using manually acquired annotations of label noise.

2 Related Work

In this section, we review three topics related to our work: fine-grained classification (Sect.
2.1), using images from the Internet for training a classification model (Sect. 2.2) and
identifying duplicate images (Sect. 2.3).

2.1 Fine-grained Classification

The research field of fine-grained classification tackles the problem of distinguishing very
similar subcategories with small inter-class variance, such as different moth species, for
example. The part-based approaches [GLY19, KBD19] tackle this problem by identifying
local regions in the images containing the distinct features such that the classification model
can focus on the right regions. On the other hand, global approaches use the entire image for
classification and thereby avoid the complex problem of extracting parts from the images.
Global approaches may rely on a specific feature pooling method [LRM15, Si17] or a clever
pre-training strategy [Cu18], to name a few examples. As this paper focuses on analyzing
the impact of web images and dataset size, we employ the straightforward global approach
in our experiments to compare different scenarios and filtering methods.
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2.2 Images from the Internet and Label Noise Handling

Utilizing the vast visual information of the Internet accessible through image search engines
is a data-driven approach to classification. Unfortunately, due to the weak labeling of images
on the Internet, this information is tainted by label noise.

To handle label noise, one set of methods applies the concept of multiple instance learning,
either learning an additional de-noising network for a fine-grained setup [Ya20] or using
a grouping strategy together with attention mechanisms that set the training focus to the
non-noisy samples [Zh17, Pe20]. Another approach was proposed by [Kr16] where a web
dataset with more categories than the target dataset was used to pre-train a network for
fine-grained classification. As mentioned previously, we expand their approach to handle
cross-class noise (3.3).

Several approaches rely on a small training set with high-quality labels to build a clean
dataset from noisy data. They train an initial model, and iteratively update it by using
non-noisy images selected by the model itself [Zh20b, Xu15, CSG13]. These approaches
require an initial representative dataset to detect hard-to-classify instances, which increases
the visual diversity for a specific class. In contrast, other methods start with a noisy dataset
and filter the noise during training or dynamically re-weight noisy samples such that they
have less impact during the model update [Re18]. Noisy instances can be either identified
using a threshold for the cosine similarity to representations of class centers [Zh20b] or
using the loss, which is typically higher for noisy instances, especially at early stages
of the training [Zh20a]. Assuming that the predictions of noisy samples change more
rapidly for consecutive training epochs compared to clean samples, a large cross-entropy of
corresponding class probability vectors can also be an indicator for noise [Li21].

A metric learning-based approach for fine-grained recognition has been proposed by [Cu16],
which requires feedback of domain experts during training via a human-in-the-loop concept.
In situations where an initial training set with part annotations exists, these can be exploited
in a transfer learning approach to detect noisy samples [Xu18] since outliers likely obtain
low detection scores when applying both a whole-object detector as well as individual part
detectors. In contrast, we focus on automatic noise filtering methods that neither require
domain experts in the training loop nor training data with part annotations.

Prominent work on sample selection as a pre-processing step, proposed in frameworks such as
co-teaching [Ha18], de-coupling [MSS17], and MentorNet [Ji18] train two networks and, for
example, use the disagreement between them to identify the noisy instances. Unfortunately,
this is a computationally expensive approach. Further data cleansing approaches have
been introduced, which utilize class-wise auto-encoders [ZT19], or a variety of different
ensemble methods [Ga16]. In contrast, an unsupervised approach was proposed by [Ni15]
who used k-means clustering, an algorithm entirely independent of labels and, therefore,
also independent of label noise. They repeatedly cluster the noisy data and use cluster
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statistics for identifying and relabeling noisy instances. We use a simplified version of this
clustering-based idea to filter cross-domain noise as described in Section 3.2.

2.3 Duplicate Detection

To tackle the issue of cross-class noise, Krause et al. [Kr16] removed duplicates among
different classes in the web data because their true category is ambiguous. We expand on
this approach by considering near-duplicates as well, i.e., image pairs that originate from the
same source but differ on a pixel level due to small transformations. Further, near-duplicate
detection is important when using publicly available datasets for the evaluation, where
overlap between training and testing subsets might occur. The task of near-duplicate detection
is non-trivial, especially when efficiency plays a crucial role since the number of comparison
operations grows with the number of samples in a dataset.

Originally, efficient duplicate detection was done by comparing hand-crafted features
extracted from the images [Ke04, Wa06]. Feature representations of images learned by a
convolutional neural network (CNN) offer an alternative to the hand-crafted features, as
shown by [BD20]. They used L2-normalized feature representations extracted for all images
from a CNN pre-trained on the respective training set to compare images. In metric learning
approaches, such as the deep ranking method proposed by [Wa14], an embedding of the
images in a lower-dimensional space is learned using a task-specific dataset. In the embedded
space, similar images are located close to each other, and dissimilar ones are far apart. We
employ a variant of the idea proposed by [BD20] utilizing a CNN pre-trained on ImageNet
for feature extraction and also use the structural similarity measure (SSIM) [Wa04] discussed
further in Section 3.3.

3 Methods

We describe our method of web data acquisition and the two typically occurring variants of
label noise in Section 3.1. Two methods for filtering label noise are explained in Sections
3.2 and 3.3, respectively.

3.1 Acquisition of Web Data

Given a small labeled training dataset, also called seed dataset in the following, we want to
download images for the same classes. The class names, i.e., species names, for this seed
dataset are used as keywords in Google Image Search, and the results are downloaded for
each class. This process is automated using the Google Cloud Platform services. From here
onwards, we will refer to the dataset of downloaded images as the augment dataset. As
mentioned previously, two different types of label noise can be identified in web data.
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An image of a map, caterpillar, or habitat would be an example of cross-domain noise for
the moth species dataset, while an image depicting a Acronicta Aceris downloaded for the
class of Acronicta Leporina would be an example of cross-class noise. In the following
section, the method for handling cross-domain noise is described, while details on our
method for mitigating cross-class noise are given in Section 3.3. The following sections
describe methods for deciding which of the images are label instances of label noise and
should be discarded.

3.2 Cross-domain Noise Filtering

For cross-domain noise filtering, we want to identify images that do not depict the domain
of the seed dataset. The method described in this section was first proposed in our previous
work [Bö21]. In theory, features extracted from a CNN of images in the augment set that
belong to the same domain as the seed dataset will have smaller distances to features of
images from the seed dataset than out-of-domain images. We utilize this observation using a
clustering-based approach. We estimate clusters jointly for feature representations of images
in the augment and the seed training set. The clusters that contain a certain amount of the
seed dataset indicate clusters of images belonging to the domain (positive clusters). Images
from the augment dataset in clusters with a high proportion of seed data are likely to belong
to the same domain as the seed dataset. Augment images in clusters with few to none of the
original seed data, on the other hand, are more likely to depict out-of-domain objects, i.e.,
cross-domain noise. Therefore, we retain images in the positive clusters for training while
the remaining images are filtered out.

We distinguish between two different types of positive clusters. A strong positive cluster
is defined by containing more than N

k samples of the seed dataset, when k clusters are
estimated, and N is the total number of images in the seed dataset. The adaptive threshold
ensures that at least some strong positive clusters are identified, even when clustering with a
large value for k. Preliminary experiments showed that with a visually homogeneous dataset,
the features of the seed dataset are too similar and are clustered together in few clusters.
In this situation, using images from strong positive clusters only is not enough to identify
within-domain images. Therefore, we further define weak positive clusters as clusters that
are closer to a strong positive cluster than the average pairwise distance between all cluster
centers. These clusters are likely to contain images not exactly within the narrow domain
of the homogeneous seed dataset but still depict objects from the wider domain the seed
dataset defines. These images are valuable in a training set, as they increase the diversity of
representations a model can learn for a given class.

Our filtering method does not rely on relatively low levels of label noise to iteratively build
an initial model with which non-noisy images are selected. In contrast, the clustering aspect
is entirely independent of labels and, therefore, of the level of label noise. Furthermore,
with higher levels of label noise, features from noisy images are more likely to be identified
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as negative clusters. Our previous work showed that indeed our method is robust to very
high levels of label noise [Bö21].

3.3 Cross-class Noise Filtering and Duplicate Detection

Cross-class label noise is arguably the most problematic in a fine-grained domain where
only experts can identify wrongly labeled instances. This problem was handled in [Kr16]
by filtering out all images that had an exact duplicate in a different class of the augment set.
This approach does not precisely filter cross-class noise but instead mitigates the issue by
removing ambiguous images. We expand on this idea by also taking near-duplicates among
different classes into account.

We utilize two similarity measures for our near-duplicate detection method. First, the
structural similarity index (SSIM) [Wa04] is used, a pixel-based similarity measure taking
luminance, structure, and contrast distortions into account. Second, we use the dot product
(Dot) of L2-normalized feature vectors extracted for the images, which is equivalent to the
cosine similarity of the features, which was used by Barz et al. [BD20] for their duplicate
detection method. The idea behind using these two similarity measures is that the first
(SSIM) will be able to detect small transformations applied to an original image, while the
second (Dot) will catch broader transformations, which the SSIM does not pick up.

The similarity measures are used to rank the images in the augment dataset, such that images
at the top of the ranking are more likely to have a duplicate in a different class of the augment
dataset. Further details on how this ranking is extracted using the similarity measures are
found in our previous work [Bö21]. The computation of the similarity measures is omitted
for images with exact duplicates identified by comparing MD5 hashes8 of the images. The
parameter portion (p) indirectly specifies how many images are discarded from the top
of the ranking in proportion to the number of exact duplicates. When p = 0.0, only exact
duplicates are discarded in cross-class noise filtering. This parameter portion defines some
prior knowledge about the level of near duplicates in comparison to exact duplicates.

4 Experiments and Results

The effect of differently sized training datasets and different aspects of the utilization of web
images are examined in our experiments. All of them are performed using the EU-Moths
dataset described in Section 4.1. In Section 4.2, we analyze the effectiveness of web images
and the impact of the domain shift. In Section 4.3, we use manually acquired annotations of
cross-domain noise in the downloaded data to evaluate the effect of noise on classification
accuracies. Finally, we discuss the effectiveness of filtering strategies in Section 4.4.

8 https://tools.ietf.org/html/rfc1321
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Fig. 1: Example images from the EU-Moths dataset from different classes.

4.1 Datasets

The EU-Moths Dataset9 contains manually taken images of 200 moth species found in
Central Europe collected by the Zoological Museum Alexander König Bonn. The moths
were photographed on a rather homogeneous, mostly white background, sometimes together
with multiple other insects. The entire dataset consists of approximately 11 images per
class. We cropped out the ground truth bounding boxes such that a moth fills an entire
image. Example images from the original dataset are found in Fig. 1. From this dataset, we
generated four data splits. Two consist of roughly three images per class in the training and
eight in the testing dataset. The other two data splits encompass eight images in the training
and three in the testing dataset. As further described in the following, we used these splits
to verify the results in two scenarios: (1) an extremely small dataset, with three training
images per class only (three-seed scenario), and (2) a moderate dataset with eight images
per class (eight-seed scenario). The four training subsets in these data splits are also referred
to as seed datasets in the following.

The Web-EU-Moths Dataset was compiled by using species names of the 200 moths to
query Google Image Search. The Links to the images can be found on the dataset website 9.
We downloaded up to 200 images for each class as described in Section 3.1. We call this
dataset the augment dataset and it consists of 36, 274 images in total. The blue line in Fig.
2a shows the sorted distribution of images over the classes in the Web-EU-Moths dataset.
This dataset is not balanced because the number of available images downloaded from the
Internet varies for different categories. The images in this Web-EU-Moths dataset contain
the two discussed types of label noise. Furthermore, the moth images in the Web-EU-Moths
dataset cover a larger domain than the narrow domain defined by the EU-Moths dataset
of close-up crops of moths photographed on white backgrounds. The images of moths in
the Web-EU-Moths dataset were photographed at different angles, on a wider variety of

9 http://www.inf-cv.uni-jena.de/eu_moths_dataset.html
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(a) Sorted distributions of the Web-EU-Moths
dataset, the cleaned version called *Web-EU-
Moths dataset where cross-domain noise has been
removed manually, and the Web-EU-Moths dataset
without exact duplicates (cross-class filtering with
p=0.0).
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(b) The number of images per class in the
*Web-EU-Moths dataset (Cross-Domain Noise
Removed) and Exact Duplicates Removed (cross-
class filtered with p=0.0). We see that some classes
are more affected by label noise than others result-
ing in class imbalance in the cleaned datasets.

Fig. 2: The data distribution over classes in the Web-EU-Moths dataset and cleaned versions of it,
where label noise has been removed

three-seed eight-seed
Training Dataset Acc ± std #img %RRE Acc ± std #img %RRE

EU-Moths 65.69% ± 0.81 552 91.01% ± 0.40 1,653
Web-EU-Moths 94.82% ± 0.27 36,274 84.90% 94.80% ± 0.58 36,274 42.16%
EU-Moths+Web-EU-Moths 96.72% ± 0.27 36,826 36.68% 97.94% ± 0.18 37,927 60.38%
EU-Moths+*Web-EU-Moths 96.88% ± 0.32 30,491 4.88% 97.98% ± 0.14 31,592 1.94%

Tab. 1: This table shows the average accuracies and standard deviations, as well as the number of
training images and relative reduction of the error (RRE), compared to the learning approach in
the row above. Training with the EU-Moths data is a supervised learning strategy, training on the
Web-EU-Moths dataset is considered a webly-supervised approach, and training on the union of both
is a semi-supervised approach. The *Web-EU-Moths dataset does not contain any cross-domain noise.

backgrounds, and at different scales. This is the so-called domain shift, and its impact is
discussed in the following section.

4.2 The Effect of Webly Annotated Images

Different Learning Approaches Using the seed EU-Moths dataset for training is an
example of supervised learning, where the training process is supervised by reliable labels.
Using web data such as the augment Web-EU-Moths dataset by itself for training is often
referred to as webly-supervised learning, where label noise is an issue. When using a reliably
labeled dataset together with web data for training, this is arguably a semi-supervised
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approach to learning, where some labels are correct and others are not. Therefore, when
we augment the EU-Moths seed datasets using data from the Web-EU-Moths dataset for
training, we call this a semi-supervised learning approach. In this section, we compare
semi-supervised learning with supervised and webly-supervised learning.

All following experiments using these different learning approaches were conducted with
an InceptionV3 [Sz16] CNN architecture pre-trained on ImageNet [Ru15]. We repeated
each experimental setup four times, each classifier is trained for 30 epochs with an initial
learning rate of 1 × 10−4 which was lowered by a factor of 10 after 15 and 25 epochs. We
also compare the effect of differently sized seed datasets as described in Section 4.1 for the
supervised (training with seed data only) and semi-supervised (training with seed and web
data) experiments. The reliably labeled EU-Moths seed datasets used in these experiments
either have three or eight images per class in the training dataset. The results in Table 1 are
the averaged accuracies for the two splits for each of the two scenarios (Section 4.1).

Comparing accuracies for the three-seed with the eight-seed scenario of the supervised
learning setting (EU-Moths), we see that the difference of 1,101 training images causes a
significant increase from 65.69 % to 91.01 %. This shows that even relatively few images
(compared to modern benchmark datasets) have an immense impact when the initial situation
involves an extremely small dataset, such as in the three-seed scenario.

These classification performances are exceeded when using the Web-EU-Moths dataset
for training in a webly-supervised learning approach (second row in Table 1). The relative
improvement of the webly-supervised learning compared to supervised learning is less
pronounced in the eight-seed scenario than in the three-seed scenario. However, in both
cases, training on the large web dataset allows for better performance even though this web
data has noisy labels.

In the semi-supervised scenario, the noisy Web-EU-Moths dataset is merged with three
and eight images per class from the EU-Moths seed datasets, respectively. The increase of
data amounts to 1.52 % in the three-seed scenario and 4.56 % in the eight-seed scenario
compared to the Web-EU-Moths dataset. This rather small increase in training data yields
an impressive improvement of the classification accuracy compared to the webly-supervised
learning of roughly 2 % in the three-seed and 3 % in the eight-seed scenario.

Domain Shift in Web Data As expected, our results show that the amount of data used for
training impacts the classification accuracy, but the type of data used matters as well, which
is especially evident when comparing the results for the different learning strategies in the
eight-seed scenario. We find that reasonable accuracies (>90 %) can already be achieved in
a supervised learning approach when using a dataset of moderate size (eight-seed scenario).
With a substantially larger dataset acquired from the Internet for training, the increase in
accuracy is comparably low considering that over twenty times more training data is used.
This is surprising, especially when considering the roughly 5 % increase in data used for
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Three Seed Eight Seed
Acc ± std images %RRE Acc ± std images %RRE

Web-EU-Moths Subset (WEMS) 94.53% ± 0.25 35,178 95.17% ± 0.73 35,178
WEMS + EU-Moths 96.66% ± 0.24 35,730 38.94% 98.46% ± 0.16 36,831 68.12%
WEMS + Mock Seed Dataset 94.67% ± 0.19 35,730 2.56% 95.53% ± 0.34 36,831 7.45%
EU-Moths 65.81% ± 0.48 552 90.52% ± 0.51 1,653
Mock Seed Dataset 20.87% ± 0.88 552 53.78% ± 1.62 1,653

Tab. 2: Comparing the webly-supervised approach using a subset of the Web-EU-Moths dataset with
the two semi-supervised approaches were correctly labeled web images in the mock seed dataset
(different domain as the validation data or images from the EU-Moths dataset (the same domain as the
validation data) are used as seed datasets for training. The relative reduction of error rate compares
the error rates of the semi-supervised approach with the webly-supervised approach in the first row.

training in the semi-supervised approach yields an equally large gain in performance. All
this suggests that not only the total amount of data used for training but also the type of data
plays an important role for the achievable classification accuracy.

These observations are explained by the fact that the training data used in the supervised
strategy originates from the same source as the test data (EU-Moths dataset), while the web
images have a wide variety of sources. As mentioned earlier, the Web-EU-Moths dataset has
a shifted domain compared to the validation subsets of the EU-Moths dataset. The fact that
the semi-supervised strategy is superior to the webly-supervised training using relatively
little additional data suggests that few images from the same domain as the validation dataset
can already counteract this domain shift in the Web-EU-Moths dataset.

To verify this and to make sure the boost in performance does not simply result from the
extra data, further experiments were conducted. We compare the effect of additional data
that originates from the validation dataset domain with additional data from the web. In
these experiments, the exact number of images used for training is controlled. For each
of the four EU-Moths seed datasets, we create a mock seed dataset with images from the
Web-EU-Moths dataset and the same number of images per class to replace the EU-Moths
datasets in the semi-supervised learning approach. The mock seed datasets were drawn
from the pool of images identified manually as belonging to the domain (Sect. 4.3). The
subset of images of the Web-EU-Moths dataset not used for the mock datasets is used to
train a model, which acts as a baseline for this experiment. Then, the accuracies achieved
when using the union of a mock dataset with the Web-EU-Moths subset for training are
compared with using the original EU-Moths dataset with the same subset and evaluated on
the same test data.

The results in Table 2 show that adding the mock seed data to the Web-EU-Moths Subset
yields a smaller gain in performance than adding the EU-Moths seed data for training
even though the merged datasets consist of exactly the same number of training images.
Especially, the substantial difference in relative reduction of error rate (RRE) compared
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to the error rate when using the Web-EU-Moths dataset in the webly-supervised approach
underlines the superiority of the semi-supervised approach using data from the evaluation
domain. The only explanation for this drastically reduced error compared to the mock
datasets is that the few images in the EU-Moths dataset are enough to counteract the domain
shift in the web images. This domain shift is the reason why using the large Web-EU-Moths
dataset in the webly-supervised approach does not yield higher accuracies. However, our
results show that this domain shift can be counteracted with very few images from the
source domain resulting in higher predictive accuracies.

In summary, web data can be used to boost accuracies, especially when the existing data is
extremely limited, and using a semi-supervised approach with few images from the domain
of the validation data is advisable.

4.3 The Effect of Cross-domain Noise

To further understand the impact of web data in a training set on the classifier performance,
we need to understand the impact of label noise. We want to compare training using noisy
web data with training on clean web data. Since only experts could reliably identify cross-
class noise, we limit our focus to cross-domain noise. We build a simple annotation tool to
obtain out-of-domain vs. within-domain binary labels for the images in the Web-EU-Moths
dataset. The user clicked only on the out-of-domain samples when looking at a small set of
sixteen images in a single panel. Thus, images of maps, habitats, or caterpillars, as well as
sketches or close-ups of moths’ heads, can quickly be labeled as cross-domain noise. Using
the binary labels to remove cross-domain noise resulted in the clean *Web-EU-Moths dataset.
The distribution of this cleaned dataset is more imbalanced than the original Web-EU-Moths
dataset, which is visualized in Fig. 2a. With the manual labeling process, we identified 6,335
images (17.5 %) in the augment Web-EU-Moths dataset as outside of the moth domain.
This level is relatively low, which might be explained, by the fact, that we only downloaded
up to two hundred images per class. Also, the species in our EU-Moths dataset are pretty
common and well studied, resulting in many images being available across the Internet.

We also use this cleaned version of the Web-EU-Moths dataset in a semi-supervised
approach as described in Section 4.2. The results for using this cleaned *Web-EU-Moths
dataset together with the EU-Moths training datasets for the two scenarios are found in
Table 1. The manually cleaned web images do not yield significant performance gains
compared to the simple merge of seed and noisy data. This observation holds independently
of the number of images in the seed dataset.

Several studies [Ro17, FP17, Zh16] have shown how deep neural networks are surprisingly
robust against moderate levels of label noise in coarse-grained classification problems.
Our results indicate that models trained for fine-grained classification problems are also
robust against label noise. An explanation was offered by [Zh16] for the robustness of deep
neural networks. They claim that highly parameterized models such as deep neural networks
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three-seed eight-seed
precision recall F1-score precision recall F1-score

Cross-Domain Filters
k=50 0.87446 0.96894 0.919 87.990 96.633 0.921
k=75 0.87751 0.95731 0.916 88.088 95.932 0.918
k=100 0.86520 0.97431 0.917 88.673 96.167 0.923
k=125 0.87696 0.97901 0.925 89.118 96.682 0.927

Cross-Class Filters
p=0.0 0.82919 0.93397 0.878 82.919 93.397 0.878
p=0.01 0.82965 0.93377 0.879 82.965 93.377 0.879
p=0.05 0.83184 0.93336 0.880 83.184 93.336 0.88

Tab. 3: This table shows the precision, recall, and F1-score of different filter setups. Since the
cross-class noise filters are entirely independent of the seed dataset, these values are the same for both
seed data scenarios.

(DNNs) have the capacity to learn and generalize from the non-noisy images and use brute
force to memorize the noisy samples. This means that the quasi memorized noisy samples
in the training dataset do not affect the classification accuracy of the test data, especially
when the test set is free of out-of-domain images. Thus, the memorized noise does not
influence the prediction of noise-free samples during the application.

The increased class imbalance in the clean *Web-EU-Moths dataset might also explain why
the accuracies do not differ more when comparing training with and without label noise.
Furthermore, label noise might have a positive regularization effect, which would explain
why the predictive accuracy is equivalently high when training with noisy data.

4.4 The Effect of Filters

In this section, our proposed filtering methods are analyzed. Intuitively, the semi-supervised
approach using the *Web-EU-Moths dataset should act as an upper bound for the following
setups, where automatically filtered subsets of the augment data are merged with the seed
datasets. We will discuss the effectiveness of our filtering methods, even though the expected
effect on accuracies in our particular application of moth species classification is negligible.
Our experiments show, using filtered datasets results in comparable accuracy with far less
training data, which reduces training time.

We test the clustering-based cross-domain noise filtering technique with four seed datasets
of the EU-Moths dataset, which guide the selection of positive clusters. In addition, the
parameter for the number of clusters k in the cross-domain noise filtering method has been
set to one of the following four values: 50, 75, 100, or 125. An overview of precision, recall,
and F1-score for the different filter settings averaged over two dataset splits for the three-seed
and the eight-seed scenario are given in Table 3. The precision refers to the percentage of
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three-seed eight-seed
Acc ± std #img %ret Acc ± std #img %ret

EU-Moths+ Web-EU-Moths 96.72% ± 0.27 36826 100.00% 97.94% ± 0.18 37927 100.00%

EU-Moths+filtered Web-Eu-Moths

Cross-Domain Filters
k=50 96.81% ±0.18 33,729 91.46% 98.05% ±0.36 34,565 90.74%
k=75 96.75% ±0.14 33,214 90.04% 97.62% ±0.36 34,258 89.88%
k=100 96.84% ±0.16 34,267 92.94% 97.67% ±0.56 34,123 89.52%
k=125 96.90% ±0.31 33,975 92.14% 97.96% ±0.11 34,136 89.55%

Cross-Class Filters
p=0.0 96.74% ±0.32 34,274 92.96% 97.92% ±0.46 35,375 92.96%
p=0.01 96.85% ±0.22 34,248 92.89% 97.76% ±0.56 35,349 92.89%
p=0.05 96.92% ±0.29 34,145 92.61% 97.84% ±0.37 35,246 92.61%

Combined Filters
k=50 p=0.0 96.98% ±0.28 31,438 85.15% 97.86% ±0.48 32,282 84.44%
k=75 p=0.0 96.96% ±0.18 30,958 83.82% 97.85% ±0.38 31,974 83.59%
k=100 p=0.0 96.93% ±0.22 31,980 86.64% 98.01% ±0.32 31,891 83.36%
k=125 p=0.0 96.92% ±0.10 31,697 85.86% 98.05% ±0.37 31,896 83.38%
k=50 p=0.01 97.00% ±0.26 31,432 85.13% 97.98% ±0.34 32,276 84.43%
k=75 p=0.01 96.99% ±0.30 30,952 83.81% 98.05% ±0.22 31,968 83.58%
k=100 p=0.01 96.90% ±0.36 31,976 86.63% 97.72% ±0.50 31,885 83.34%
k=125 p=0.01 96.87% ±0.22 31,692 85.84% 97.85% ±0.44 31,890 83.36%
k=50 p=0.05 97.03% ±0.22 31,416 85.09% 98.10% ±0.26 32,260 84.38%
k=75 p=0.05 97.07% ±0.31 30,936 83.76% 97.94% ±0.20 31,952 83.53%
k=100 p=0.05 97.00% ±0.35 31,960 86.59% 97.96% ±0.22 31,869 83.30%
k=125 p=0.05 96.90% ±0.30 31,676 85.80% 98.10% ±0.36 31,874 83.32%

Tab. 4: Impact of different filter options on the classification accuracy when training a moth species
classifier with a semi-supervised approach using both the EU-Moths dataset and the Web-EU-Moths
dataset. The retention rate (ret%) refers to the percentage of web images retained by th filter. The first
row shows the results when using the unfiltered web data for comparison

images retained by the filter that are non-noisy ones. Recall describes the percentage of
all non-noisy images, i.e., images depicting moths, retained by a given filter. Since many
studies [Ro17, FP17, Zh16] point towards the minimal adverse effect of label noise, it is
arguably more critical to retain a large portion of the non-noisy data than to ensure the
retained data contains little noise. Therefore, high recall is more important when comparing
different hyperparameter settings for the filters.

Overall, we found a high overlap of retained images between different filters using different
values of k and differing seed datasets. This indicates the robustness of the proposed
filtering method, given different hyperparameter settings and seed datasets. The average
intersection-over-union ratio of retained images between all pairs of filters is 94.52 % with
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a standard deviation of ±1.52 %. This means that on average, two filters agreed on more
than 94 % images that should be retained.

Since evaluating cross-class noise filtering methods would require expert knowledge, it is
out of the scope of this work. However, we can assess how well the method for cross-class
noise filtering is suited for identifying cross-domain noise. The idea is that out-of-domain
images might be downloaded multiple times in different classes, which means the cross-class
noise filtering method based on duplicate detection might be effective for filtering these
instances. The lower half in Table 3 reveals that even though the cross-class noise filtering
method was not designed to do so, it is surprisingly effective at handling cross-domain
noise. This confirms the hypothesis that many noisy images are both out-of-distribution
and downloaded multiple times for different classes. As our previous work [Bö21] shows,
it is advantageous to set the parameter portion (p), which specifies how many images are
removed (Section 3.3), to a low value for this domain. Hence, we evaluate the cross-class
noise filtering with the values 0.0, 0.01, and 0.05 for the parameter p. With these low values
for p, only a few images are discarded by cross-class noise filtering. When filtering out
only exact duplicates (p = 0.0), we filter out the minimum cross-class noise. Similar to the
cleaned Web-EU-Moths dataset without cross-domain noise, the data distribution of the
web dataset where the minimum cross-class noise removed is visualized in Figure 2.

We used the filtered subsets of the Web-EU-Moths dataset to train a model in a semi-
supervised manner, where seed datasets of different sizes (three-seed and eight-seed) are
merged with the retained images (Table 4). We average the results from two splits of the
same size for each of the different scenarios. In the experiments in which cross-domain noise
and cross-class noise filters are combined, only those images are retained that both filters
consistently identify as non-noisy, i.e., images are discarded if at least one filter identifies
it as noise. As expected, there is no clear trend towards a performance boost when using
only filtered data for training. However, the classification accuracies remain stable for all
filter setups, even when less data is used for training the classifier. This shows that the noise
filtering techniques succeed in filtering out irrelevant images and are robust with respect to
different hyperparameter settings. Therefore, in situations where the level of noise is higher,
our methods are likely to be beneficial in terms of predictive accuracy.

5 Conclusion

Our work shows the benefits of additional training datasets acquired through image search
engines from the Internet for learning a classification model. The conducted experiments
demonstrate that a semi-supervised learning approach, where web images together with
images of the same domain as the test dataset, can counteract the domain shift in web
data. This approach yields higher accuracies than a webly-supervised approach, training
using web data only, and a supervised approach, training on small seed datasets only. We
further found evidence that deep neural networks trained for fine-grained classification tasks
are robust to label noise, and removing noise does not significantly improve classification



16 Böhlke

performances in our use case. Finally, we studied the effect of noise filtering techniques
using ground truth annotations of cross-domain label noise and found that the simple to
implement methods we proposed are effective in identifying noisy samples.
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