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Abstract. Gaussian processes offer the advantage of calculating the
classification uncertainty in terms of predictive variance associated with
the classification result. This is especially useful to select informative
samples in active learning and to spot samples of previously unseen
classes known as novelty detection. However, the Gaussian process frame-
work suffers from high computational complexity leading to computation
times too large for practical applications. Hence, we propose an approx-
imation of the Gaussian process predictive variance leading to rigorous
speedups. The complexity of both learning and testing the classification
model regarding computational time and memory demand decreases by
one order with respect to the number of training samples involved. The
benefits of our approximations are verified in experimental evaluations
for novelty detection and active learning of visual object categories on
the datasets C-Pascal of Pascal VOC 2008, Caltech-256, and ImageNet.

1 Introduction

The Gaussian process framework is a powerful tool for solving regression and
classification problems [15], especially for complex recognition tasks in the visual
domain [9,10,16,7]. Using a Gaussian process classification model learned with
training data, statistical inference can be done in a Bayesian manner provid-
ing the estimated class label of a test sample together with the uncertainty of
this estimation. While the class label is obtained from the predictive mean, the
classification uncertainty is related to the predictive variance of the Gaussian
process. However, learning such a model turns out to be costly, since a matrix
inversion is involved, whose calculation has a complexity cubic in the number of
training samples. In the test step, computing the predictive mean is then possible
in linear time, but the complexity of calculating the predictive variance is still
quadratic. Although Gaussian processes achieve great performance in many com-
puter vision tasks such as novelty detection [10,7], object categorization [9,16],
and active learning [9,7], training and testing the model is expensive.

To overcome this drawback of high computation costs, we present an approx-
imation of the variance leading to quadratic runtime during learning and only
linear time in the test step. Besides storing all training samples, the memory
demand of our approximation is only linear, since we do not need to keep the
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whole kernel matrix in memory. Our proposed approximation is proved to be a
true upper bound for the exact variance. In addition, we apply our basic idea
of the approximation to the predictive mean allowing for faster learning of the
whole Gaussian process model.

Recently, fast exact Gaussian process inference was proposed in [16] for large-
scale recognition and extended in [7] for fast variance computations applied to
novelty detection and active learning. However, the speed up is achieved by ex-
ploiting properties of the histogram intersection kernel. In contrast, our approx-
imation goes one step further and is independent of the kernel function, which
allows for using generalized rbf kernels [20] or any other application-specific ker-
nel function. Experimental results show superior recognition performances of
those kernel functions compared to histogram intersection kernels (see Sect. 7).

As applications of our approximation, we consider novelty detection and ac-
tive learning. For novelty detection, the performance is evaluated in one-class
classification scenarios [10,7], where only samples of a single class are known
during learning. In the test step, samples of other classes serve as novelties,
which need to be detected. The assumption is that novelties are dissimilar to
already observed samples and are thus far away from the training data in the
feature space. Furthermore, active learning experiments [9,7] for binary classifi-
cation tasks are conducted. Starting with a small set of labeled samples, active
learning methods automatically select samples from a pool of unlabeled data.
These samples can then be labeled and incorporated in the learning step in order
to improve the classification model. The goal is to select the most informative
samples first, e.g., samples close to the decision boundary to refine discrimination
or samples far away from already labeled data to explore the feature space.

The paper is organized as follows. In Sect. 2, we review related work on
various Gaussian process approximations as well as novelty detection and active
learning using Gaussian process regression. The key idea of our approximation is
presented in Sect. 3 together with an optimization problem to minimize the ap-
proximation error. How to solve this optimization problem is described in Sect. 4.
Furthermore, to avoid costly optimizations, we propose a fast variance approxi-
mation in Sect. 5. In Sect. 6, we show that similar approximation techniques can
also be used to allow for efficient predictive mean calculations. We present results
of our experiments in Sect. 7. Conclusions can be found in the last section.

2 Related Work

In this section, we briefly review the Gaussian process regression framework and
related work on approximating Gaussian processes as well as the application of
Gaussian process regression for novelty detection and active learning.

2.1 Gaussian Process Regression

The key idea of Gaussian process regression is to model the dependency of contin-
uous outputs y(x) = f(x)+ε on a latent function f and a noise term ε. Typically,
the noise term is assumed to be normally distributed with zero mean and noise



Approximations of GP Uncertainties 3

variance σ2
n , i.e., ε ∼ N (0, σ2

n). Latent functions f are supposed to be drawn from
a Gaussian process prior with mean function µ(·) and covariance function κ(·, ·).
Without any prior knowledge, a zero mean assumption is a common choice. As
a result of these requirements, output values y∗ of unknown samples x∗ can be
predicted in a Bayesian manner by marginalizing over latent functions f. Given
training samples X with labels y, the predictive distribution of y∗ is Gaussian:
y∗ | X,y,x∗ ∼ N (µ∗, σ2

∗) and moments can be calculated in closed form:

µ∗ = kT
∗
(
K + σ2

nI
)−1

y and (1)

σ2
∗ = k∗∗ − kT

∗
(
K + σ2

nI
)−1

k∗ + σ2
n , (2)

where K = κ(X,X), k∗ = κ(X,x∗), k∗∗ = κ (x∗,x∗). For more details about
Gaussian process regression and classification, we refer the reader to [15].

2.2 Approximations of Gaussian Processes

An overview of various sparse approximations for Gaussian process regression
is provided by [13]. They propose a unifying scheme based on latent inducing
variables that includes several previous methods, e.g., subset of regressors (SoR),
deterministic training conditional (DTC), fully independent training conditional
(FITC), and partially independent training conditional (PITC) approximations.
The simplest possible approximation of only using a subset of data (SoD) is also
mentioned in [13] but does not fall inside their scheme. For comparisons with our
approximations, we select the FITC approximation originally proposed by [18]
as state-of-the-art and baseline technique. Furthermore, the work of [11] gives an
extensive overview of approximating Gaussian processes in binary classification
tasks with noise models different from the Gaussian noise model.

2.3 Novelty Detection with Gaussian Processes

Novelty detection with Gaussian processes in one-class classification scenarios
can be done by label regression as shown in [10]. The authors propose using a
zero mean assumption as well as training labels y = 1 = (1, 1, . . . , 1)T to compute
predictions according to (1) and (2). They recommend using either the predictive
mean µ∗ (GP-Mean) or the predictive variance σ2

∗ (GP-Var) as novelty scores
such that novelties are detected via a small mean value or a large variance. In
their experiments, the simple Gaussian noise model mentioned in Sect. 2.1 leads
to better performance compared to more complex models (sigmoid or probit)
using Laplace approximation or expectation propagation [15].

2.4 Active Learning with Gaussian Processes

Active learning in binary classification tasks using Gaussian process regression
was proposed in [9]. Informative samples are selected via a small absolute mean
value or a large variance similar to novelty detection but with binary labels
yi ∈ {−1, 1}. Since the predictive variance is independent of the label vector y,
we end up in a novelty detection scenario where informative samples for active
learning are supposed to be far away from known samples in the feature space.
The authors of [9] also use the simple Gaussian noise model stated in Sect. 2.1.
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3 Diagonal Approximation of the Kernel Matrix

The advantage of the Gaussian process framework is the possibility of computing
the classification uncertainty in terms of predictive variance, which can directly
be used for novelty detection or active learning as reviewed in the previous
section. However, computing the predictive variance is costly. With respect to
the number of training samples, learning time is cubic since the inverse of the
regularized kernel matrix is required and testing time is quadratic. Therefore,
we are interested in an approximation of the predictive variance that only needs
linear time for a new test sample and meets the following requirements:

1. the approximation is an upper bound for the exact variance: σ̃2
∗ ≥ σ2

∗, to
ensure that only samples similar to the training data obtain small uncer-
tainties, and

2. the approximation error is minimal: σ̃2
∗ − σ2

∗ → min.

Recalling the calculation of Gaussian process predictive variance, we ob-
serve that the high computation cost arises from calculating the quadratic form
q = kT

∗ K̃
−1k∗ using K̃ = K + σ2

nI to denote the regularized kernel matrix.
Therefore, our fast uncertainty approximation aims at approximating q in an
efficient manner. Obviously, computing q would only take linear time if K̃−1 is
a diagonal matrix3. Replacing K̃−1 by the inverse of a diagonal matrix D:

q̃ = kT
∗D
−1k∗ (3)

is an approximation of the quadratic form q and computable in linear time. We
directly get an approximation of the Gaussian process predictive variance σ2

∗:

σ̃2
∗ = k∗∗ − kT

∗D
−1k∗ + σ2

n (4)

using q̃ instead of q. If D is given, this approximation is very efficient due to its
calculation in linear time and with only linear memory demand.

To determine the elements of D−1, our approximation should meet the re-
quirements 1 and 2 stated above. From linear algebra it is known that the ap-
proximation error σ̃2

∗ − σ2
∗ = kT

∗ (K̃−1 −D−1)k∗ is bounded by:

λmin(K̃
−1 −D−1)‖k∗‖2 ≤ kT

∗ (K̃−1 −D−1)k∗ ≤ λmax(K̃
−1 −D−1)‖k∗‖2, (5)

with λmin(·) and λmax(·) as the smallest and largest eigenvalue of the involved
matrix. We can ensure requirements 1 and 2 by solving the optimization problem:

min
D

λmax(K̃
−1 −D−1) s.t. λmin(K̃

−1 −D−1) ≥ 0 . (6)

Note that according to (5), the approximation error also depends on k∗ and is
in O(‖k∗‖2). Solving the optimization problem in (6) is discussed in the next
section. A fast approximation that only satisfies the first requirement of being
an upper bound is proposed and analyzed in Sect. 5.

3 Note that K̃−1 converges to a diagonal matrix for kernel scales σ → 0 of the Gaussian
kernel: κGaussian(x,x′) = exp(− 1

σ2 ‖x− x′‖2).
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4 Minimizing the Approximation Error

Optimizing the maximum eigenvalue function, which in our case is used to mini-
mize the approximation error defined in the previous section, has been studied in
the optimization community [12,4]. The goal is to minimize the maximum eigen-
value of a real symmetric N ×N matrix, which is obtained by a real symmetric
N ×N matrix-valued affine function A(d) of d ∈ IRN [12]:

min
d∈IRN

λmax(A(d)) , (7)

with A(d) = A(0) +
∑N
k=1 dkA

(k) and A(0),A(1), . . . ,A(N) being real symmetric
matrices of size N ×N . The special case of A(k) = eke

T
k for k = 1, . . . , N with

ek being the k-th unit vector leads to:

A(d) = A(0) + Diag(d) , (8)

where Diag(d) is a diagonal matrix with the vector elements of d placed on the
main diagonal [12]. This formulation is exactly the one we need to minimize the
upper bound for the approximation error in (6). We therefore set A(0) = K̃−1

and solve the problem in (7) using (8) to obtain d. For the optimization, we use
the smooth convex approximation algorithm of [4]. Note that we additionally
have to ensure the constraint in (6), which we do by checking the validity of the
smooth sub-problem solution [4]. Finally, we get the solution of the optimization
problem in (6) via D−1 = −Diag(d). We refer to the approximate variance
based on the optimized matrix D−1 as optimized approximate variance.

5 Fast Approximation of Uncertainties

The key idea discussed in Sect. 3 is speeding up Gaussian processes by using
a diagonal matrix instead of the full kernel matrix to allow for efficient matrix
inversion. However, our optimization strategy presented in the previous sec-
tion needs time cubic in the number of training samples during learning with
quadratic memory demand, since the inverse of the regularized kernel matrix
is required explicitly. We therefore additionally propose a fast approximation
of Gaussian process uncertainties by computing the elements of the diagonal
matrix using elements of the full kernel matrix directly.

As in Sect. 3, we aim for approximating the quadratic form q in an efficient
manner. First, we rewrite q as follows:

q = kT
∗ K̃
−1k∗ =

N∑

i=1

N∑

j=1

(k∗)i(k∗)j(K̃
−1)ij =

N∑

j=1

(k∗)jk
T
∗ (K̃−1)·j , (9)

where we denote the number of training samples with N , the j-th column of
K̃−1 with (K̃−1)·j , and vector as well as matrix elements using brackets with
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subscripts. Since 1T(K̃)·j =
∑N
i=1(K̃)ij is the sum of all elements in the j-th

column of K̃, we use it to expand (9):

q =

N∑

j=1

(k∗)jkT
∗ (K̃−1)·j1T(K̃)·j
1T(K̃)·j

=

N∑

j=1

(k∗)jkT
∗ Q̃(K̃)·j

1T(K̃)·j
, (10)

where Q̃ = [(K̃−1)·j , . . . , (K̃−1)·j ] is a matrix consisting of N times the j-th

column of K̃−1. Note that there is no approximation involved so far. To avoid
possible divisions by zero, we have to restrict our approximation to nonnegative
kernel functions (κ(x,x′) ≥ 0 ∀x,x′) such as the family of squared exponential
kernels [15] and positive noise variances σ2

n > 0.
If we now replace Q̃ = [(K̃−1)·j , . . . , (K̃−1)·j ] by the whole inverse of K̃,

we obtain an approximation q̃ of the quadratic form q leading to:

q̃ =

N∑

j=1

(k∗)jkT
∗ K̃
−1(K̃)·j

1T(K̃)·j
=

N∑

j=1

(k∗)jkT
∗ej

1T(K̃)·j
=

N∑

j=1

(k∗)2
j

1T(K̃)·j
, (11)

where ej is the j-th unit vector. Defining a diagonal matrix D̃ by (D̃)jj =

1T(K̃)·j =
∑N
i=1(K̃)ij , the approximation q̃ can be written as:

q̃ =
N∑

j=1

(k∗)2
j

(D̃)jj
= kT

∗ D̃
−1k∗ . (12)

Using this approximation q̃ of the quadratic form q, we obtain our fast ap-
proximation of the predictive variance as in (4) via σ̃2

∗ = k∗∗ − kT
∗ D̃
−1k∗ + σ2

n .
In the rest of the paper, we refer to this approximation as fast approximate vari-
ance. From (12), we observe that our fast approximation of q and thus our fast
variance approximation is similar to a weighted squared Parzen density estima-
tion. While the original Parzen density estimation [2] averages the similarities
between the test sample and all available training samples, our fast approximate
variance involves the squared similarity between a test sample and each training
sample weighted by the overall similarity to other training samples. In contrast
to sparse approximations of Gaussian processes (see Sect. 2.2), each of the N
training samples directly contributes to the prediction in our fast approximation.

The learning step of our fast approximation takes O(N2) time, basically to
calculate pairwise similarities of training samples followed by computing ele-
ments of the diagonal matrix D̃. These computations can easily be parallelized
due to the independent entries of D̃. For a test sample we need O(N) time to
compute the fast approximate variance. Additionally, the memory demand is
only linear in the number of training samples during both learning4 and testing.
Usually, the memory demand is quadratic, since at least once the whole kernel
matrix has to be kept in memory. A comparison of the exact and our approxi-
mate variance calculations regarding asymptotic runtime and memory demand
is given in Table 1.

4 Elements of D̃ can be calculated one after another without computing K̃ beforehand.
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Table 1. A comparison of our optimized and fast variance approximation with the
exact calculation regarding asymptotic runtime and memory demand during learning
and testing based on the number of training samples N .

Learning Testing
Time Memory Time Memory

exact variance (Sect. 2) O(N3) O(N2) O(N2) O(N2)
opt. variance approximation (Sect. 4) O(N3) O(N2) O(N) O(N)
fast variance approximation (Sect. 5) O(N2) O(N) O(N) O(N)

It can be shown that our fast approximation is a true upper bound of the
exact variance. The proof is given in our technical report [3]. Theorem 1 of [3]
shows that the approximation error depends on ‖k∗‖2, which can be seen as a
modified Parzen estimate with quadratic kernel terms. For samples similar to the
training data we get a high approximation error whereas for outliers the error is
small. Since we are interested in novelty detection and active learning, we only
care about the resulting ranking of test samples and we will see in Sect. 7 that
the approximation does not affect the recognition performance at all.

An example showing the exact and our fast approximate variance can be
seen in Fig. 1. Utilizing the ImageNet database [5], a Gaussian process one-
class classifier is learned with samples of a single target class and tested with
50, 000 samples of 1, 000 classes including the target class. From the plots in
the figure, we observe that the approximate variance has a similar shape as the
exact variance (right part of the plots). Note that in novelty detection, we want to
differentiate between samples from the target class with a low predictive variance
and samples from unknown classes with a high predictive variance. The decrease
of the variance in the right part of the plots is mainly caused by samples of the
target class and can be observed for the same samples considering the exact and
the approximate variance. Therefore, the difference between the target class and
other classes can also be recognized using our fast variance approximation but
much faster than computing the exact variance.

6 Approximating the Predictive Mean

Since our proposed variance approximations lead to substituting the regularized
kernel matrix in (2) by a diagonal matrix, we can do the same substitution
in the calculation of the Gaussian process predictive mean. This leads to an
approximate predictive mean µ̃∗ defined as:

µ̃∗ = kT
∗ D̃
−11 , (13)

which turns out to be similar to a weighted Parzen density estimation with the
same weights as in our proposed variance approximation (Sect. 5). Indeed, this
does not give a computation speedup in the testing step, because the asymp-
totic runtime remains O(N) and thus linear in the number of training samples.
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Fig. 1. The exact predictive variances of 50, 000 test samples obtained from a nov-
elty detection experiment are sorted in descending order and the corresponding fast
approximations are shown. The right plot displays each 100-th sample of the left one.

However, the complexity for learning the model can be reduced from O(N3) to
O(N2), since computing the inverse of the regularized kernel matrix is replaced
by calculating the elements of the diagonal matrix D̃−1. In our experiments, we
tested both the optimized and the fast approximation of the predictive mean
leading to results illustrated in the next section.

7 Evaluations of Experiments

We compare our fast approximations (GP-FA-Var and GP-FA-Mean) as well
as our optimized approximations (GP-OA-Var and GP-OA-Mean) with the ex-
act calculations (GP-Var and GP-Mean) and the FITC approximation of [18]
(GP-FITC-Var and GP-FITC-Mean) in novelty detection and active learning5.
Results for a standard regression task can be found in our technical report [3].
We used the GPML toolbox [14] as well as the provided code of [10,19] and eval-
uated each method within the same MATLAB framework. Re-implementations
in C++ are used to measure computation times.

7.1 Experimental Setup

Our evaluations are based on experiments on three different datasets: Cropped-
Pascal (C-Pascal) [6], Caltech-256 [8], and ImageNet [5]. We choose the same
1, 000 object categories from the ImageNet database [5] as done for ILSVRC
20106. As image representations, we use the provided quantized local features7

(densely sampled SIFT descriptors) to calculate histograms following the bag-of-
visual-words (BoV) approach. Such features are also available for the Caltech-256
dataset8 and used in our experiments. In contrast, provided histograms of HOG
descriptors9 are used to represent objects from C-Pascal images.

5
MATLAB source code for our approximations is available at: http://www.inf-cv.uni-jena.de/
Forschung/paperProjects/Approximations+of+Gaussian+Process+Regression.html

6
http://www.image-net.org/challenges/LSVRC/2010

7
http://www.image-net.org/download-features

8
http://homes.esat.kuleuven.be/~tuytelaa/unsup features.html

9
http://www.d2.mpi-inf.mpg.de/content/ralf
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Table 2. Computation times and median AUC scores from novelty detection experi-
ments. Bold: best method per dataset, blue: best approximations per dataset, red: our
approximations are faster than exact computations. *Nonoptimized SVDD code.

Median AUC for Median Time Median Time
Different Datasets Learning Testing (average of

Method C-Pascal Caltech-256 ImageNet (100 samples) 50, 000 samples)

GP-FA-Var 75.86 % 77.46 % 76.48 % 0.09 ms 1.08 µs
GP-OA-Var 76.26 % 74.91 % 74.80 % 587.76 ms 1.08 µs
GP-Var [10] 76.37% 77.92% 75.51 % 0.29 ms 10.14 µs
GP-FITC-Var [18] 74.87 % 77.17 % 75.88 % 0.30 ms 0.54 µs

GP-FA-Mean 75.64 % 77.19 % 76.44 % 0.09 ms 0.04 µs
GP-OA-Mean 76.09 % 74.65 % 74.76 % 590.49 ms 0.04 µs
GP-Mean [10] 73.78 % 77.48 % 76.92 % 0.30 ms 0.04 µs
GP-FITC-Mean [18] 74.26 % 76.76 % 76.51 % 0.25 ms 0.03 µs

SVDD [19]/1SVM [17] 74.17 % 77.43 % 76.99% 11.50 ms* 1.16 µs*

Similarities between histograms are computed using the histogram intersec-
tion kernel [1]: κHIK(x,x′) =

∑D
d=1 min(xd,x

′
d) or the corresponding generalized

rbf kernel [20]: κEXPHIK(x,x′) = exp(2 ·κHIK(x,x′)−κHIK(x,x)−κHIK(x′,x′)).
We only present results obtained using the EXPHIK, since the HIK achieves
inferior performance in all our experiments. Note that due to this reason, we
outperform [7] in terms of recognition performance, since their approach is re-
stricted to the HIK. For the Gaussian noise model, we use σ2

n = 0.1. We randomly
picked 25% of the training samples for the inducing subset of the FITC method
in order to avoid costly optimizations.

Novelty Detection Setup Each category of the Caltech-256 dataset is tested,
where we randomly select 50% of the samples for training. During testing, the
remaining samples serve as positives and all samples of the other 255 categories
are considered as novelties. The same setup is used for the C-Pascal dataset,
where we randomly select 25% of the samples for training. For both datasets,
results are averaged over 20 random splits for each category.

The ImageNet dataset is split into two subsets for training and validation.
The training set consists of 100 images per category resulting in a total of 100, 000
images and the validation set used for testing consists of 50 images per category
resulting in a total of 50, 000 images. In every task, we use 100 images of a single
category during learning. Runtimes are obtained from our ImageNet experiments
on a computer with 3.4 GHz CPU excluding the calculation of similarities with
the kernel function, since computing the kernel values of training samples as well
as similarities for test samples is shared among all methods. Note that due to
this reason, we do not fully exploit the sparsity of the SVDD model.

Active Learning Setup Active learning experiments are done using the Im-
ageNet dataset. Binary classification tasks are built by randomly sampling ten
categories, where one delivers positive samples and samples of the remaining
nine serve as negatives. We start with five randomly picked samples per cate-
gory, which results in five positives and 45 negatives. Performance is measured
using AUC scores averaged over ten random initializations and 50 binary tasks.
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(a) Training images of the category
trolleybus.

(b) Top five ranked test images using the exact
variance (98.56 % AUC).

(c) Top five ranked test images using our fast
variance approximation (98.47 % AUC).

Fig. 2. Image rankings from a novelty detection experiment on the ImageNet dataset.
Red boxes indicate novelties, green boxes highlight images of the target class.

7.2 Experimental Results

Novelty Detection Besides the Gaussian process techniques, we also tested
the support vector data description (SVDD) of [19] using an outlier ratio of
ν = 0.1. For SVDD, we used a nonoptimized implementation, which makes
use of standard quadratic programming algorithms. The asymptotic runtimes of
SVDD are similar to those of the standard Gaussian process methods without
approximation. One-class SVM (1SVM) achieves recognition results equivalent
to SVDD when using kernels that lead to constant self-similarities κ(x,x) [17].
Since this is the case in our experiments, we implicitly compare to both methods.

Computation times needed for both learning and testing the models as well
as AUC scores averaged over all categories of three different datasets are sum-
marized in Table 2. First of all, we note that our fast approximations achieve a
clear speedup during learning and the time necessary to compute the variance in
the test step reduces by a factor of 10. Note that the FITC approximation of the
variance is faster in the test step due to its sparsity properties. During learning,
the FITC variance approximation is slightly slower compared to the exact model
caused by the number of samples used. Although appealing from a theoretical
point of view, our optimized approximations take a lot of time during learning.
However, the optimized approximations are the best approximations regarding
median AUC on the C-Pascal dataset.

The median AUC scores using our fast approximations are superior to those
of the FITC method on all three datasets. Furthermore, our approximations
achieve recognition results comparable to the exact calculations and the sup-
port vector based methods. The benefit of our fast approximate variance can be
observed in terms of lower computation time during both learning and testing
while keeping recognition performances. Our fast mean approximation achieves
results as good as our fast variance approximation.

The obtained novelty scores can be used to create a ranking of the images
showing which images fit best to the category. We present the top five ranked
images obtained from a novelty detection experiment using the exact variance
and our fast variance approximation in Fig. 2. Four out of these five test images
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Fig. 3. Active learning results on the ImageNet dataset comparing predictive mean
approximations (left) and predictive variance approximations (right).

are the same for both methods. Additionally, we observe that they rank the same
sample at the top position, which does not belong to the target class trolleybus
but to the visual similar class police van. This confusion is caused by similar
appearance compared to training samples of the target class.

Active Learning The results of our active learning experiments are shown in
Fig. 3. For both mean and variance, we observe that our fast and our optimized
approximations achieve performances superior to random sampling and compa-
rable to the exact calculations as well as the FITC approximation. Therefore,
our approximations are also suitable for active learning, since informative sam-
ples can be selected much faster from a large pool of unlabeled data. Note that
the combinations of mean and variance used in [9,7] result in similar behavior
in our experiments compared to solely using mean or variance.

8 Conclusions and Future Work

In this paper, we have proposed approximations of Gaussian process regression
reducing both runtimes and memory demands during learning and testing. These
approximations allow for using Gaussian process techniques in practice, where
runtime and memory is limited. Our key idea is to perform computations with
a diagonal approximation of the kernel matrix, which allows for efficient model
evaluations during testing. We presented two strategies to find the diagonal
approximation: (1) an optimization approach that minimizes the approximation
error and (2) a fast approach using squared similarities in a weighted Parzen-like
estimation. Moreover, we have proved in [3] that the fast approximate variance is
a true upper bound of the exact variance. We compared our approximations with
the exact calculations as well as the FITC approximations in novelty detection
and active learning demonstrating their suitability for various computer vision
applications. Despite its simplicity, the fast approximation turned out to be
competitive with the exact calculations and the FITC approximations while
requiring less memory and computational time.

Future work will concentrate on similar approximations for Gaussian pro-
cesses with noise models more complex than the Gaussian noise model. Addi-
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tionally, we plan to extend our proposed approximations to multi-sample active
learning, where a set of test samples has to be treated jointly instead of inde-
pendently from each other.
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