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Abstract

We present an information theoretic framework for one-class classification, which
allows for deriving several new novelty scores. With these scores, we are able to rank
samples according to their novelty and to detect outliers not belonging to a learnt data
distribution. The key idea of our approach is to measure the impact of a test sample
on the previously learnt model. This is carried out in a probabilistic manner using
Jensen-Shannon divergence and reclassification results derived from the Gaussian pro-
cess regression framework. Our method is evaluated using well-known machine learning
datasets as well as large-scale image categorisation experiments showing its ability to
achieve state-of-the-art performance.

1 Introduction
Detecting samples of unknown classes is a key task for active learning and one-class classi-
fication (OCC). Starting from a set of only positive training samples, we want to estimate a
soft membership score for every new test sample. This score can then be used (1) to rank a
set of test samples according to their novelty with respect to the training set; or (2) to perform
thresholding and use the discrete decision to detect outliers [14]. Applying OCC methods is
especially beneficial in situations where either negative data is difficult to model with given
samples or where negative samples are hard to obtain.

A common strategy of kernel-based OCC is Parzen density estimation [1], where similar-
ity scores between each of the training samples and the test samples are calculated with a ker-
nel function and summed up. Another technique is support vector data description (SVDD)
proposed by Tax and Duin [15]. Their main idea is to enclose the training samples with a
hypersphere in feature space. A similar approach was introduced by Kemmler et al. [6] but
motivated from a Gaussian process (GP) point of view [5, 13]. The authors derive different
novelty measures from the GP framework by utilising the predictive mean and variance of
the estimate. The work of [12] uses the GP latent variable model of [7] to apply a Gaussian
mixture model in the estimated latent space allowing for flexible density estimation in the
original input space.
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Figure 1: Outline of our approach based on mutual information.

Similar to [3], the key idea of our method is to measure the impact of a test sample on the
previously learnt model when the sample would be treated as an additional training sample.
While the approach of [3] is restricted to parametric models such as mixtures of Gaussians,
we present a general framework for ranking and measuring novelty based on information
theory and probabilities estimated with Gaussian process regression. The new framework
sheds light on OCC from a completely different theoretical perspective. We derive several
new OCC scores from this framework and evaluate them with standard classification as well
as large-scale image categorisation experiments. An overview of our presented approach,
which is based on mutual information and divergence measures of information theory, can
be seen in Figure 1. Although our formulation is strongly related to active learning [5], we
only consider one-class classification in this paper.

The contributions of this paper can be summarised as follows: (1) we consider one-
class classification from a completely new perspective by proposing a framework based on
divergence measures of information theory and (2) we highlight the connections to well-
known information theoretic aspects like mutual information. Additionally, we derive a new
one-class classification score from the Gaussian process regression framework and show that
our presented approach achieves state-of-the-art performance on various datasets.

The paper is structured as follows: Section 2 explains the basic elements of our diver-
gence framework. This framework is used in Section 3 together with a GP classification
model to derive OCC novelty scores. Experiments on different applications including a
large-scale image categorisation scenario are evaluated in Section 4. A summary of our
findings concludes the paper.

2 Divergence-based one-class classification
In this section, we present our OCC framework based on mutual information and divergence
measures of information theory. It allows for deriving novelty scores, which can be utilised
in one-class classification scenarios. The idea of our approach is to measure how strongly a
new test sample would influence the current model if it was used for training. We measure the
expected change based on approximations of the divergence between the resulting models
under different label assumptions for the test sample.

2.1 Basic idea and notation
In the following, we assume a given training set X = {x(1), . . . ,x(N)} with corresponding
labels y and try to estimate a membership score of a test sample x∗. Throughout this paper,
we score the sample based on the resulting model change after treating it as an additional
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training sample. We first note that we do not have to evaluate the resulting model change
for the whole input space: if we use x∗ as an additional training sample, the assumption of
its true class, namely whether it belongs to the target class, mainly influences the decision
function in the neighbourhood of x∗. Consequently, we can approximate the change of the
whole model by evaluating its change in a local neighborhood of x∗. However, this strategy
would still lead to costly sampling and model evaluations. Therefore, we approximate the
change of the model by relying on a neighborhood of infinite small size and only taking the
new sample itself and its reclassification result into account. The main idea of our approach
is visualized in Figure 2.

To evaluate the change of the model, we once assume that x∗ belongs to the target class
(y∗ = 1) and once assume the opposite (y∗ = −1). Since we have no precise knowledge
about the correct label of new samples, we model the assumed label y∗ ∈ {1,−1} as a binary
random variable. We further introduce a second random variable Y ∗ ∈ {1,−1} to evaluate
the model on x∗ after the model update, i.e., the variable Y ∗ is the reclassification result
of x∗. Note that it is important to regularize the model complexity to obtain non-trivial
reclassification results, which is in our case done by assuming noisy labels (Section 3). In
the following, we show how to obtain a valid novelty score based on the introduced variables
and the main idea stated above.

2.2 Measuring novelty with mutual information and divergence
When considering Figure 2, we notice that outliers lead to a significant change of the model
in their local neighborhood under both label assumptions. In contrast, a sample from the tar-
get class can not be explained well using the assumption y∗ =−1 and thus leads to a smaller
change of the model in this case. We therefore note that for measuring the resulting model
change, we can rely on the dependence between the assumed label y∗ and the reclassifica-
tion result Y ∗, which can be measured using the mutual information I(Y ∗,y∗ | D∗). Since
both variables should be influenced by the available data, the mutual information depends
on D∗ = (X,y,x∗), which contains the training set as well as the new test sample x∗. The
conditional mutual information can be written in terms of the conditional entropy H:

I(Y ∗,y∗ | D∗) = H(Y ∗ | D∗)−H(Y ∗ | y∗,D∗) . (1)

Obviously, this measure will be high if the conditional entropy H(Y ∗ | y∗,D∗) is low. A low
conditional entropy indicates that the reclassification result Y ∗ is almost certain given the
assumed label y∗. Since the reclassification of x∗ heavily depends on the training data X
contained in D∗, one achieves a low conditional entropy if the test sample x∗ is far away
from the training samples and the reclassification is mainly influenced by the assumed label
y∗. An example is given in Figure 2. In case of a test sample similar to the training samples,
the reclassification result is more affected by the training samples. As stated above, the
assumption of y∗ =−1 leads to a higher probability for a wrong reclassification and thus to
a higher remaining uncertainty in terms of conditional entropy (bottom left plot in Figure 2).
Summing up, a low conditional mutual information is induced by a strong membership to
the target class and vice versa. We use the negative conditional mutual information as an
OCC score, leading to low scores for possible outliers.

Calculating the conditional mutual information can be done by further expanding Eq. (1)
based on the definition of conditional entropy and the random variables involved. We use
shortcuts π = p(y∗ = 1 |D∗) and (1−π) = p(y∗ =−1 |D∗) for the prior probabilities of the
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Figure 2: Visualization of our divergence approach. We want to measure the impact of a
test sample on the current model. While both label assumptions y∗ ∈ {1,−1} of a possible
outlier can be verified by reclassification using the model additionally trained with the test
sample (blue curve), the assumption y∗ = −1 will lead to a weak reclassification of a test
sample stemming from the target class. Our approach exploits this difference. Classification
uncertainty is visualised by shaded areas. The figure is best viewed in colour.

assumed label. Furthermore, we write p j
i = p(Y ∗ = j | y∗ = i,D∗) for conditional probabili-

ties of Y ∗ given the assumption about the label y∗. The corresponding distribution is denoted
with pi. With these notations, we can specify the mutual information in Eq. (1) as follows:

I(Y ∗,y∗ | D∗) = H(Y ∗ | D∗)−
(

π ·H(Y ∗ | y∗ = 1,D∗)+(1−π) ·H(Y ∗ | y∗ =−1,D∗)
)

(2)

=− ∑
i∈{1,−1}

p(Y ∗ = i | D∗) log(p(Y ∗ = i | D∗))

+π · ∑
j∈{1,−1}

p j
1 log

(
p j

1

)
+ (1−π) · ∑

k∈{1,−1}
p k
−1 log

(
p k
−1

)
.

(3)

Probabilities p(Y ∗ = i | D∗) for reclassification results can be written in terms of the condi-
tional probabilities of Y ∗:

p(Y ∗ = i | D∗) = π · pi
1 +(1−π) · p i

−1 =: m i . (4)

Replacing the probabilities p(Y ∗ = i | D∗) in Eq. (3) by the term given in Eq. (4), we get the
following expressions for the conditional mutual information:

I(Y ∗,y∗ | D∗) =− ∑
i∈{1,−1}

(
π · pi

1 +(1−π) · p i
−1
)

log
(
m i)

+π · ∑
j∈{1,−1}

p j
1 log

(
p j

1

)
+(1−π) · ∑

k∈{1,−1}
p k
−1 log

(
p k
−1

) (5)

= π · ∑
i∈{1,−1}

pi
1 log

(
pi

1
m i

)
+(1−π) · ∑

j∈{1,−1}
p j
−1 log

(
p j
−1

m j

)
(6)

= π ·DKL (p1||m)+(1−π) ·DKL (p−1||m) , (7)
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where DKL(·||·) is the Kullback-Leibler (KL) divergence and m = π ·p1 +(1−π) ·p−1 the
mixture of the two conditional probability distributions p1 and p−1. From Eq. (7) we observe
that the mutual information of Y ∗ and y∗ is equal to the Jensen-Shannon (JS) divergence [8]
Dπ

JS (p1||p−1) of the probability distributions p1 and p−1. Therefore, this divergence mea-
sures the difference of the models obtained with label assumptions y∗ = −1 and y∗ = 1,
which is an estimation of the impact of x∗ on the model. Note that we are able to incorporate
prior knowledge of an OCC task by controlling the parameter π . However, without any prior
knowledge, one typically assumes a uniform prior π = (1−π) = 1

2 leading to:

D
1
2
JS (p1||p−1) =

1
2

DKL (p1||m)+
1
2

DKL (p−1||m) . (8)

Furthermore, it is bounded by 0 and 1, because the mutual information is non-negative and
bounded by the conditional entropy of a binary random variable. A mutual information of 0
is achieved if and only if the involved probability distributions are equal.

We propose using the negative JS divergence as an OCC score. For the computation,
we only need the parameter π as well as conditional probability distributions p1, and p−1.
Since the random variables are binary, we have discrete distributions and can use any suitable
model that provides the conditional probabilities and offers regularizing model complexity.
In this paper, we propose using posterior probabilities of a Gaussian process (Section 3). An
advantage for our framework is that the GP regression model is influenced by every training
sample, even possible outliers, which leads to the behaviour shown in Figure 2.

Note that applying the JS divergence is different from the approach of [3], where the
authors propose using the asymmetric KL divergence based on probabilities estimated from
mixtures of Gaussians in the input space. In contrast, we incorporate the GP framework to al-
low for more flexibility of our model by using kernels. Besides, our divergence-based scores
are directly derived from an information theoretic framework justifying their utilisation.

3 Integrating Gaussian process posterior probabilities
In the previous section, we formulated our framework without specifying any probability
distribution, neither prior probabilities π nor probability distributions p1 and p−1. In the
following, we show how predictive probabilities estimated with GP classification can be
integrated into the proposed framework. We first very briefly review GP regression for OCC
as introduced by [6] and show afterwards how to estimate label probabilities.

3.1 GP regression for one-class classification
The Gaussian process framework is a well-known probabilistic methodology that is success-
fully used for tasks such as regression and classification [13]. In the case of GP regression,
continuous outputs yc are assumed to be generated according to yc(x) = f (x)+ ε , where f
is a latent function and ε is a noise term. Following a Bayesian framework, output values
of unknown samples x∗ are predicted in a probabilistic fashion by marginalising over latent
functions f . A key part of GP regression are the following assumptions:

1. Latent functions f are drawn from a Gaussian process prior with mean function µ(·)
and covariance function κ(·, ·).

2. The noise term is normally distributed: ε ∼N (0,σ2
n ).
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The last assumption allows for a tractable prediction. Since we have no a-priori knowledge
about the underlying data in general, we assume a zero mean of the GP prior in the following
derivations. Using these assumptions, the predictive output value y∗c for a new sample x∗
given the data D∗ = (X,y,x∗) is normally distributed as well:

y∗c | D∗ ∼N (µ∗,σ
2
∗ ) , (9)

where moments µ∗ and σ2
∗ can be given in closed form expressions. For more insights into

the GP framework, the interested reader is referred to [13].
The work of [6] shows how GP regression can be employed for one-class classification

problems. The authors propose using both the predictive mean µ∗ (GP-Mean) and negative
variance −σ2

∗ (GP-Var) as one-class scores applied to training data with labels y = 1:

µ∗ = kT
∗
(
K+σ

2
n I
)−1 1 and (10)

−σ
2
∗ =−

(
k∗∗−kT

∗
(
K+σ

2
n I
)−1 k∗+σ

2
n

)
, (11)

where the shortcuts k∗∗ = κ (x∗,x∗), k∗ = κ(X,x∗), and K = κ(X,X) are used. They also
utilise the predictive probability density value p(y∗c = 1 | D∗) (GP-Pred) as a combined score
of mean and variance.

3.2 GP classification for divergence-based one-class classification
In this section, we show how to compute the conditional probabilities that are necessary to
obtain the divergence measures defined in Section 2. Recalling Eq. (9) of the one-class GP,
we first observe that the prior probabilities π = p(y∗ = 1 | D∗) can be calculated using the
predictive mean and variance from Section 3.1. Due to the fact that y∗ is a binary variable
and y∗c is continuous, we propose computing π via:

π = p(y∗ = 1 | D∗) = p(y∗c > 0 | D∗) = 1
2
− 1

2
erf
(
−µ∗√

2σ2
∗

)
, (12)

where erf(·) is the error function and the parameters µ∗ and σ2
∗ are obtained from one-class

GP as given in Eq. (10) and (11). Since this probability leads to different scores compared
to the predictive probability density value p(y∗c = 1 | D∗) presented in [6], we additionally
propose using p(y∗c > 0 | D∗) (GP-Prob) of GP regression directly for OCC as well. Note
that this approach is related to the probit model utilised in [6] but without applying Laplace
approximation, which is necessary when also the discrete nature of the training labels is
taken into account [11].

Beside the prior probabilities, we also need to compute probabilities of the conditional
distributions p1 = p(Y ∗ | y∗ = 1,D∗) and p−1 = p(Y ∗ | y∗ =−1,D∗). If we denote the num-
ber of training samples stored in X with N, the conditional probabilities will arise from a
GP model learnt with N + 1 training samples by treating the current test sample x∗ and its
assumed label y∗ as training data as well. Let us have a closer look how we can compute the
conditional probabilities.

For the distribution p1, we have an OCC scenario with N + 1 training samples and cal-
culate the moments of the normal distribution at position x∗ in the sense of reclassification
using Eq. (10) and (11). Having these moments, we are able to compute similar to Eq. (12):

p(Y ∗ = 1 | y∗ = 1,D∗) = p(y∗c > 0 | y∗ = 1,D∗) and (13)
p(Y ∗ =−1 | y∗ = 1,D∗) = 1−p(y∗c > 0 | y∗ = 1,D∗) . (14)
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The assumption y∗ =−1 leads to a binary classification scenario and we compute prob-
abilities of the distribution p−1 using the GP regression framework for binary classification.
The predictive variance is independent of the labels and therefore remains the same as for the
distribution p1. Thus, we compute the variance using Eq. (11) treating x∗ as a training sam-
ple leading to an involved kernel matrix K of size (N+1)×(N+1) and a similarity vector k∗
of size N +1. The mean value can be computed with Eq. (10) using the extensions of K and
k∗ as well as the vector (1T;−1)T instead of 1. The probabilities p(Y ∗ = 1 | y∗ = −1,D∗)
and p(Y ∗ =−1 | y∗ =−1,D∗) can be computed with mean and variance like those of the dis-
tribution p1 (Eq. (13) and (14)). The difference between the behaviour of samples stemming
from the target class and outliers is visualised in Figure 2 using a solid line for the predictive
mean and shaded areas for the predictive variance of the GP model.

Since the binary classification scenario is highly imbalanced, we utilise different noise
levels for samples of the two classes in the GP model to overcome this drawback. However,
the bias of imbalanced data could also be beneficial when we deal with an OCC scenario,
since we want to have a strong influence of our target data samples. We therefore differen-
tiate between the balanced and imbalanced JS divergence depending on whether we use the
balancing strategy for computing the involved probabilities. For both approaches, we have
to calculate the moments of normal distributions depending on the inverse of a matrix which
itself depends on the current test sample x∗. Fortunately, we do not need to compute the
whole inverse of this matrix requiring O(N3) operations each time. Instead, we update its
Cholesky factor in an efficient way as explained in the next section.

3.3 Efficient Cholesky updates
In this section, we show that computing our divergence-based novelty scores can be done
in O(N2) by efficiently updating the Cholesky decomposition of the kernel matrix. From
Eq. (10) and (11), we observe that we have to perform multiplications with the inverse of
(K+σ2

n I) which is equal to solving the linear system:

(K+σ
2
n I)x = z . (15)

Since (K+σ2
n I) is symmetric and positive definite, we can calculate its Cholesky decompo-

sition (K+σ2
n I) = LLT, where the Cholesky factor L is a lower triangular matrix. Instead

of inverting the kernel matrix, we solve Eq. (15) via:

Lx̂ = z and LT x = x̂ (16)

using the Cholesky factor as well as forward- and back-substitutions. If we treat the test
sample as an additional training sample following the approach proposed in the previous
sections, we have to cope with the inverse of the matrix K∗ defined by:

K∗ =
(

K+σ2
n I k∗

kT
∗ k∗∗+σ2

n

)
. (17)

Denoting the Cholesky factor of K∗ with L∗, we can calculate L∗ using L via [10]:

L∗ =
(

L 0
`̀̀T∗ `∗∗

)
, (18)

where we obtain `̀̀∗ and `∗∗ from solving L `̀̀∗ = k∗ and `∗∗ =
√

k∗∗+σ2
n − `̀̀T∗ `̀̀∗. We can

therefore compute L in the learning step as done for one-class GP and L∗ in the test step
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using Eq. (18). Note that the matrix inversion lemma [9] can also be applied here, however,
the Cholesky decomposition is often regarded as being more numerically stable.

4 Experiments
In this section, we first explain how the experiments are conducted. The results on well-
known machine learning datasets as well as on the challenging ImageNet dataset [2] used for
image categorisation are presented afterwards. The performance of each method is measured
with the area under the ROC curve (AUC).

4.1 Experimental setup
The experiments are performed to compare our OCC methods with other kernel-based tech-
niques, in particular Parzen density estimation, SVDD, and one-class GP. Similarities be-
tween two feature representations are measured with the Gaussian kernel. Beside the hyper-
parameter of this kernel function (scale σ ), we also have to determine the noise variance σ2

n

of the GP models as well as the outlier ratio ν of SVDD [15]. To estimate optimal parameter
values, random splitting of the datasets in training, validation and test sets is done. During
optimisation, the parameters are varied as follows: the optimal kernel hyperparameter σ is
estimated from {0.25,0.5,0.75, . . . ,2.0}, whereas the method specific parameters σ2

n and ν

are chosen from {0.025,0.05,0.075, . . . ,0.2}.
As done in [15], we first perform experiments with two UCI datasets [4], namely Iris1 and

Sonar2. Since each of the three Iris classes contains 50 samples, we randomly divide them
into 15 samples for training, 15 for parameter optimisation and 20 for testing. Recognition
results for each target class are obtained by averaging over 20 random splits. The Sonar
dataset contains two classes with 97 and 111 samples. For each class, we randomly pick 30
samples for training, 30 for parameter optimisation and the remaining samples for testing.
Recognition results are again achieved by averaging over 20 random splits.

To perform large-scale experiments, we use the ImageNet database and choose the same
1,000 object categories as done for ILSVRC 20103. The provided quantised local features4

are used to calculate histogram representations following the bag-of-visual-words approach.
We split the dataset into three subsets used for training, parameter optimisation, and testing.
Each of the three subsets contains 50 images per category leading to 50,000 samples for
each set. The experimental results are averaged over all 1,000 tasks.

4.2 Results on UCI machine learning problems
The evaluation of our experiments with the UCI datasets [4] is shown in Table 1. For the
Iris dataset, we only list results of two classes, because all evaluated methods achieve 100%
accuracy on the remaining third class. Considering the median AUC values obtained from
both datasets, we observe that there is no method superior to the others in all four tasks,
but our imbalanced JS divergence measure is among the best three approaches in every task.
The results of the class Sonar-Rocks are clearly dominated by our methods, since our three

1http://archive.ics.uci.edu/ml/datasets/Iris
2http://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Sonar,+Mines+vs.+Rocks)
3http://www.image-net.org/challenges/LSVRC/2010
4http://www.image-net.org/download-features
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Median AUC of target class
OCC method Iris-Versicolour Iris-Virginica Sonar-Rocks Sonar-Mines

GP-Prob 0.981 0.966 0.625 0.772
bal. JS div. 0.981 0.967 0.618 0.768
imbal. JS div. 0.981 0.968 0.624 0.773

Parzen [1] 0.973 0.960 0.602 0.771
SVDD [15] 0.986 0.971 0.609 0.761
GP-Mean [6] 0.983 0.974 0.613 0.756
GP-Var [6] 0.979 0.964 0.608 0.770
GP-Pred [6] 0.980 0.968 0.618 0.776

Table 1: Method comparison on the UCI datasets Iris and Sonar. Our proposed OCC methods
(GP-Probability, balanced and imbalanced JS divergence) are highlighted with bold font and
the best three results of each task are underlined.

proposed measures achieve the best three performances in this case. As a summary, we
notice that our methods achieve state-of-the-art performance in OCC and are even able to
outperform the most prominent techniques.

4.3 Results in large-scale image categorisation
Usually, OCC methods are tested on UCI machine learning datasets [15] or applications
of limited size and complexity [6]. However, real-world novelty detection tasks such as
in visual object recognition are often more difficult due to the high variability of the data.
Therefore, we compare our methods also on ImageNet [2], a large-scale image categorisation
dataset containing 1,000 different classes and tens of thousands of images. The results of
the experimental evaluation are visualised in Figure 3. As can be seen, our presented meth-
ods achieve performance comparable to state-of-the-art, even on this challenging large-scale
dataset. This demonstrates that our proposed techniques are able to cope with large-scale
scenarios. Interestingly, the performances of well-established methods also do not signifi-
cantly differ (Wilcoxon rank sum test for Parzen, SVDD, and GP-Mean: p > 0.8).

5 Conclusions and future work
We presented a new approach for one-class classification, which is based on a novel the-
oretical framework combining concepts of information theory as well as Gaussian process
classification. The main idea of our approach is to measure the impact of the label of a
new test sample on the current classification model, which is a new way of considering one-
class classification problems. Our methods, which allow for flexible novelty detection with
arbitrary kernel functions, were evaluated on several machine learning as well as image cate-
gorisation tasks. We demonstrated that they achieve state-of-the-art performance comparable
to well-known and already established techniques.

Future work will concentrate on incorporating other information sources to improve the
novelty detection performance. For example, novelty detection for scene understanding and
continuous learning could highly benefit from incorporating temporal as well as spatial ob-
ject context. Another important aspect is the adaptation of one-class classification techniques
to perform novelty detection for multiple known classes.
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OCC method Median AUC (Std. dev.)

GP-Prob 0.758 (±0.103)
bal. JS div. 0.757 (±0.103)
imbal. JS div. 0.755 (±0.103)

Parzen [1] 0.765 (±0.105)
SVDD [15] 0.765 (±0.103)
GP-Mean [6] 0.767 (±0.103)
GP-Var [6] 0.741 (±0.104)
GP-Pred [6] 0.751 (±0.103)

Figure 3: Method comparison on the ImageNet dataset. Our proposed OCC methods (GP-
Probability, balanced and imbalanced JS divergence) are highlighted with bold font.
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