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Abstract. Object discovery is one of the most important applications
of unsupervised learning. This paper addresses several spectral cluster-
ing techniques to attain a categorization of objects in images without
additional information such as class labels or scene descriptions. Due to
the fact that background textures bias the performance of image cat-
egorization methods, a generic object detector based on some general
requirements on objects is applied. The object detector provides rectan-
gular regions of interest (ROIs) as object hypotheses independent of the
underlying object class. Feature extraction is simply constrained to these
bounding boxes to decrease the influence of background clutter. Another
aspect of this work is the utilization of a Gaussian mixture model (GMM)
instead of k-means as usually used after feature transformation in spec-
tral clustering. Several experiments have been done and the combination
of spectral clustering techniques with the object detector is compared to
the standard approach of computing features of the whole image.

1 Introduction and Related Work

Unsupervised image categorization for object discovery is a challenging task in
computer vision. Algorithms try to group images according to categories of the
pictured objects only using the visual content. This can be done by utilizing
similarities between representations of images assuming that images containing
objects of the same class provide similar feature vectors. A clustering of all
vectors then implies a clustering of the corresponding images.

Commonly used approaches for object discovery include spectral clustering
techniques, which are characterized later in this paper. A main part of those
methods rely on graph partitioning based on optimizing the Normalized Cut [11].
Closely related to Normalized Cuts Spectral Clustering is a dimensionality reduc-
tion technique called Laplacian Eigenmaps [2], where at last, the same eigenvalue
problem of the graph Laplacian as for the Normalized Cut optimization needs
to be solved. A good overview of spectral clustering and graph Laplacians is
provided by von Luxburg [5].

Another alternative to discover objects in images is the usage of Topic mod-
els [12, 13]. Object categories are determined by estimating the parameters of a
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statistical model, which involves hidden (latent) topic variables [12]. Both ap-
proaches for object discovery, spectral clustering and topic modeling, are com-
pared in Tuytelaars et al. [14]. In the present paper, we focus on spectral clus-
tering techniques and present their combination with a general object detector.

2 Spectral Clustering Techniques

Spectral clustering techniques are methods that rely on the eigen-decomposition
of a modified similarity matrix containing pairwise similarities of feature vec-
tors [14]. Using the eigenvectors and eigenvalues of such matrices, feature vectors
can be transformed by projections into a low-dimensional feature space prior to
clustering.

In this section, four selected methods, which meet that definition of spectral
clustering, are described briefly. They have in common that each of them uses
pairwise similarities of feature vectors x(1), . . . ,x(M) ∈ IRN calculated by a
kernel function κ and collected in a kernel matrix K with Kij = κ

(
x(i),x(j)

)
.

Each method realizes a specific feature transformation and the transformed data
points are always clustered using standard techniques. While k-means is usually
applied, we use a GMM, which generalizes k-means by estimating arbitrary
covariance matrices.

2.1 Nonlinear Component Analysis

Kernel methods treat the kernel matrix K as a matrix containing inner products
of the feature vectors in a higher-dimensional space IF, which mostly depends on
the input space in a nonlinear way. The following two approaches of nonlinear
component analysis both project the data points on principal axes in IF without
computing vectors in this space, but they differ in the selection of the axes.

Kernel Principal Component Analysis (Kernel-PCA). For Kernel-PCA,
those principal axes are chosen, which offer largest variance of data points in IF.
Thus, Kernel-PCA is equal to standard PCA in this higher-dimensional space.
As in standard PCA, a centering step is necessary to ensure centered data points
in IF [10]. The largest eigenvalues and corresponding eigenvectors of the centered
kernel matrix K̄ solving K̄v = λv are required to compute transformed feature
vectors x̃(1), . . . , x̃(M) [10].

Kernel Entropy Component Analysis (Kernel-ECA). Using Kernel-ECA
for feature transformation also results in computing projections of data points on
principal axes. Different to Kernel-PCA, the eigenvectors are not chosen accord-
ing to the largest eigenvalues of the centered kernel matrix, but with respect
to their contribution to an approximation of the quadratic Renyi entropy [8]
H (p) = − log

∫
p2 (x) dx. As stated in [4], the aim is to select principal axes with

highest contributions to this entropy. The contribution of the m-th principal axis

to an approximation of this entropy is cm =
(√
λm1Tv(m)

)2
with eigenvalue λm

and the corresponding eigenvector v(m) of K. Compared to Kernel-PCA, there
is no centering step of the kernel matrix involved [4].
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2.2 Normalized Cuts Spectral Clustering

For Normalized Cuts Spectral Clustering, a weighted and undirected graph is
constructed treating feature vectors as vertices and pairwise similarities as edge
weights. Thus, it is possible to use the kernel matrix K to represent a full graph.
The two methods of this section optimize the Normalized Cut [11] of the graph
determined by K. In general, the optimization can be done by minimizing the

Rayleigh quotient yT(D−K)y
yTDy

, which ends in computing eigenvectors according

to the smallest eigenvalues of the generalized eigenproblem (D −K)y = λDy,
where D is a diagonal matrix containing row sums of K [11]. The eigenvalue λ
is equal to the Normalized Cut with respect to y, which in theory is a binary
vector describing the corresponding bipartition of the graph.

Random Walks Laplacian Eigenmaps (Random Walks LEM). The work
of Meila and Shi [6] gives an interpretation of spectral partitioning with random
walks using the stochastic matrix P = D−1K. Instead of the generalized eigen-
problem, they solve

(
I −D−1K

)
y = λy, with I the identity matrix, by com-

puting eigenvectors of P according to the largest eigenvalues. Since eigenvectors
of P are also solutions for the generalized eigenproblem [5], these eigenvectors
minimize the Normalized Cut as well. Forming a matrix X̃ containing the eigen-
vectors of P in its columns, the rows of X̃ represent the transformed feature
vectors x̃(1), . . . , x̃(M). Because of the strong connection between Normalized
Cuts Spectral Clustering and Laplacian Eigenmaps (cf. Sect. 1) as well as the
random walks point of view [6], this method is termed Random Walks Laplacian
Eigenmaps (Random Walks LEM) throughout this paper.

NJW-Algorithm. The NJW-Algorithm [7] uses eigenvectors of the normalized

Laplacian matrix L = D− 1
2 (D −K)D− 1

2 by computing eigenvectors according
to the largest eigenvalues of L̃ = I−L. Compared to Random Walks LEM, this

leads to scaled eigenvectors z = D
1
2y [11]. Transformed feature vectors are

computed as done in the algorithm called Random Walks LEM, but with an
additional normalization of the rows of X̃ having unit length [7].

3 Object Detection and Categorization of ROIs

As in [14], feature extraction is often performed on the whole image. To avoid
clusterings based on background textures, it is desirable to compute features
only at regions, which are covered by an object. The key idea of this paper is to
integrate a general object detector into an unsupervised learning framework for
object discovery. For this purpose, the general object detector of Alexe et al. [1]
is applied to generate bounding boxes as object hypotheses independent of the
object’s class and feature extraction can be limited to these rectangular areas.
Using this detector, we get an arbitrary number of bounding boxes, each of them
having a score between 0 and 1 measuring how likely the rectangle contains an
object of any class. The scoring and thus the detector works generic across
categories using some object cues such as closed contour and color contrast [1].
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At first glance, applying this detector is not possible in an unsupervised
framework, because the detector needs to be trained with images and ground-
truth-information about ROIs. But if the training images are completely inde-
pendent of the clustered images, there is no information utilized about the latter.
So, when we use the detector with the default parameter setting, which comes
with the software of [1] and whose values are obtained using images containing
objects of classes different to those that should be discovered, it can be seen as
an unsupervised scenario as well.

First Approach: One ROI per Image. In a first approach, we sample a
fixed number of ROIs for every image, but using only the ROI of each image
with the highest score given by the detector. Feature extraction, transformation
and clustering is simply done for those ROIs and the category label of one ROI
directly specifies the label of a single image.

Second Approach: Multiple ROIs per Image. The second approach em-
ploys the idea of [9] for object discovery, where multiple segmentations of each
image are used with the assumption that at least one segment covers one single
object in a sufficient way. In the case of ROIs, assuming that at least one ROI
is a good bounding box for an object in the image, multiple ROIs per image
are sampled at the beginning, e.g. b ROIs with highest score. Subsequent, fea-
ture extraction is performed on all ROIs as well as feature transformation and
clustering. In the end, there are b labels for each image, one per ROI. To avoid
images with multiple labels and to compare the results with the first approach,
it is necessary to have one label for each image. Using a GMM for clustering,
one can determine a single ROI per image, which has the highest probability for
being a member of the specific category and the image is assigned to the label
of this ROI.

4 Experimental Results

In experiments, all images of 20 object categories of the Caltech-256 dataset
selected by [14] are grouped. PHOG features [3] as well as the χ2-kernel [14]
are applied, and also a kernel particular for PHOG similarity [3], which we
term PHOG-kernel. As proposed in [14], the conditional entropy is measured to
evaluate a clustering. A low conditional entropy corresponds to a high quality
of the clustering.

In Fig. 1, the conditional entropy of achieved clusterings is displayed de-
pending on the dimension of the transformed feature vectors, where 〈IMAGE 〉
stands for feature calculation on the whole image, 〈1 ROI 〉 for applying the first
approach proposed in Sect. 3 and 〈1 of 10 ROIs〉 for the usage of ten ROIs per
image selecting the best one as described in the second approach. It can be seen
clearly that only using one ROI per image leads to poor clusterings according
to the conditional entropy, whereas multiple ROIs show better performance. As
stated before, we also calculated features on the whole image. Indeed this leads
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(a) Kernel-PCA
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(b) Kernel-ECA
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(c) Random Walks LEM
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(d) NJW-Algorithm

〈IMAGE〉 〈1 ROI 〉 〈1 of 10 ROIs〉

Fig. 1. Conditional entropy of the clusterings depending on the dimension of the trans-
formed feature vectors (number of eigenvectors used for transformation), obtained
by four spectral clustering techniques (a)–(d) and three mentioned approaches using
PHOG-kernel [3] and a GMM (best viewed in color)

to the best results, but especially the NJW-Algorithm produces nearly equal out-
puts comparing 〈IMAGE 〉 and 〈1 of 10 ROIs〉. For clarity and due to the lack
of space, Fig. 1 only shows the results obtained by the GMM since in further
experiments, clusterings using k-means achieve a higher conditional entropy.

In comparison to the results of [14] using 20 eigenvectors for feature trans-
formation, the clusterings are better for 〈IMAGE 〉, notably obtained by Kernel-
PCA with a conditional entropy of 1.55 (cf. Table 1). Also 〈1 of 10 ROIs〉, using
twice the number of eigenvectors, because there is an additional performance
gain for a dimension higher than 20, achieves good results near the lower bound
given by the intervals of [14].

5 Conclusions

The presented results show the ability of applying a general object detector in an
unsupervised object discovery framework, where the usage of multiple ROIs per
image leads to better performance. Although the proposed method of spectral
clustering of ROIs does not provide a clear quantitative performance benefit, our
approach of first detecting an object in general and subsequent discovering the
category is promising and improvements should be aspired in further work.
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Table 1. Conditional entropy of the clusterings with χ2-kernel compared to results
of [14], where different features are evaluated (that’s why there are intervals denoted)

Spectral Clustering 〈IMAGE〉 〈1 of 10 ROIs〉
Technique (20 Eigenvectors) (40 Eigenvectors)

Kernel-PCA & GMM 1.55 1.61
Kernel-ECA & GMM 1.60 1.62
Random Walks LEM & GMM 1.56 1.67
NJW-Algorithm & GMM 1.61 1.66

Kernel-PCA & k-means [14] 1.64− 2.35 –
NJW-Algorithm & k-means [14] 1.58− 2.54 –

In our studies, it turned out that a GMM for grouping transformed feature
vectors, compared to commonly used k-means, boosts the quality of categoriza-
tions obtained by spectral techniques.
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