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Abstract. The analysis of natural disasters such as floods in a timely
manner often suffers from limited data due to coarsely distributed sensors
or sensor failures. At the same time, a plethora of information is buried
in an abundance of images of the event posted on social media platforms
such as Twitter. These images could be used to document and rapidly
assess the situation and derive proxy-data not available from sensors,
e.g., the degree of water pollution. However, not all images posted online
are suitable or informative enough for this purpose.

Therefore, we propose an automatic filtering approach using machine
learning techniques for finding Twitter images that are relevant for one
of the following information objectives: assessing the flooded area, the
inundation depth, and the degree of water pollution. Instead of rely-
ing on textual information present in the tweet, the filter analyzes the
image contents directly. We evaluate the performance of two different
approaches and various features on a case-study of two major flooding
events. Our image-based filter is able to enhance the quality of the re-
sults substantially compared with a keyword-based filter, improving the
mean average precision from 23% to 53% on average.

Keywords: Flood impact analysis · Natural hazards analysis · Content-
based image retrieval · Computer vision

1 Introduction

Floods cause severe damages in urban areas every year. Up-to-date information
about the flood is crucial for reacting quickly and appropriately by providing
assistance and coordinating disaster recovery [2]. However, traditional sensors
such as water level gauges often fail to provide the required information [12],
either because of failures, a too coarse spatio-temporal resolution, or even the
absence of sensors, e.g., in the case of surface water flooding, which can occur
far off the next stream.

For a rapid flood impact analysis and documentation, more versatile sources
of information are hence desirable for augmenting the data obtained from sen-
sors. One such source of information, which is available in abundance nowadays,
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consists in images of the flood posted by citizens on social media platforms.
Thanks to the widespread adoption of smartphones, this information is usually
available rapidly during the flood event and covers populated areas with a bet-
ter resolution than traditional sensors. Though images do not provide accurate
measurements, as opposed to sensors, they are in many cases still useful to es-
timate important information. For example, the boundaries of the flooded area
can easily be identified in an image. The grade of water pollution can also be
assessed visually for certain types of pollution such as, e.g., oil spills. It can even
be possible to estimate the inundation depth if the image shows objects of known
height in the flooded area, such as traffic signs, cars, or people.

Fohringer et al. [5] made use of this information by manually inspecting the
images of all tweets that contained a flood-related keyword and were posted in
the area and timeframe of interest. Beyond simple keyword matching, sophis-
ticated machine learning techniques have recently been applied to filter event-
related tweets based on their text [8]. These text-based approaches have two
major drawbacks when it comes to finding images of the event: First and fore-
most, a text-based filter captures far too many images for manual inspection in
the context of rapid flood impact assessment. Secondly, users may not always
mention the flood directly in the text of the tweet, since the topic is already
recognizable from the image. A text-based filter would miss these images and,
therefore, ignore potentially useful information.

To overcome these issues, Barz et al. [1] recently proposed a filtering tech-
nique based solely on the content of the images using an interactive image re-
trieval approach. In their framework, the user initiates the process by providing
an example image illustrating what they are looking for. The system then re-
trieves a first set of similar images in which the user flags a handful of images
as relevant or irrelevant to subsequently refine the search results over several
feedback rounds. Such an interactive approach is suitable in face of an open set
of possible search objectives, since the system adapts to the user’s needs from
scratch during each session. While this seems useful for a detailed post factum
analysis of the event, the interactive feedback process is too time-consuming for
rapid flood impact analysis during the flood. Moreover, the set of important
search objectives is usually more limited during this phase of analysis and fo-
cuses on a few key metrics such as the spread and depth of the flood. In such a
scenario, it is redundant to refine the system from scratch several times. Instead,
a classifier trained in advance on an annotated dataset can be used to filter the
social media images of the event quickly without user interaction.

Therefore, this work focuses on developing a pre-trained non-interactive filter
for relevant flood images. We use the annotated European Flood 2013 dataset
from Barz et al. [1] as training data and demonstrate that the filters learned on
those images collected from Wikimedia Commons also perform well in practice
on Twitter images. To this end, we evaluate their performance on images we
collected from Twitter regarding two real flooding events, which occurred in 2017
and 2018 in Germany. We find that such pre-trained filters clearly outperform a
purely keyword-based approach, which ignores the image content.
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Fig. 1: Comparison of näıve flood image retrieval based on textual keywords and
the time of the tweet (top row) and three classification-based filters optimized for
different information objectives (last three rows). Each row shows six top-scoring
images from the Harz17 dataset.

Figure 1 shows an example illustrating the value of task-aware image-based
filtering. The results in the top row have been retrieved based on textual key-
words and their temporal proximity to the peak of the event. Besides flood
images, they also contain irrelevant images without flooding, memes, and still
images from news shows. The following three rows, in contrast, show the top-
scoring results obtained from three different filters: The results of the flooding
filter mainly contain images depicting the boundary between flooded and non-
flooded areas. The inundation depth filter focuses on visual clues that are helpful
for determining the approximate depth of the flood such as traffic signs and peo-
ple standing in the water. Finally, the pollution filter searches for images of
heavily polluted water.

We describe these tasks and the datasets used in this study in more detail
in the following Section 2 and then explain the different filtering approaches
developed and tested in this work in Section 3. Experimental results on the
European Flood 2013 dataset and our two novel twitter datasets are shown in
Section 4 and Section 5 concludes this work.

Our two Twitter datasets and the best filter models are publicly available at
https://github.com/cvjena/twitter-flood-dataset.

2 Datasets and Search Objectives

We use an existing annotated dataset of flood images for training our filters and
evaluate them on two novel flood datasets collected from Twitter.

https://github.com/cvjena/twitter-flood-dataset
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2.1 The European Flood 2013 Dataset

The European Flood 2013 dataset [1] is a multi-label dataset comprising 3,710
images collected from the Wikimedia Commons category “Central Europe floods,
May/June 2013”. Each image has been annotated by experts from hydrology
regarding its relevance with respect to the following three search objectives:

Flooding Does the image help to determine whether a certain area is flooded
or not? An image considered as relevant would show the boundary between
flooded and dry areas. Images that do not show any inundation at all are
considered not relevant.

Inundation depth Is it possible to derive an estimate of the inundation depth
from the image due to visual clues such as, for example, traffic signs or other
structures with known height? If there is no flooding at all, the image is
considered as not relevant for inundation depth.

Water pollution Does the image show any pollution substances? The focus is
on heavy contamination by chemical substances such as oil, for example.

For each of these objectives, between 100 and 250 images have additionally been
selected as “ideal queries”, which are considered to represent the information
objective particularly well. We will use these queries later to compare our pre-
trained filters with a retrieval-based method (see Section 3).

The dataset is typically augmented with 97,085 distractor images from the
Flickr100k dataset [9] (excluding images with the tags “water” and “river”),
which are not considered as relevant for any of the aforementioned tasks. We use
the combined dataset of almost 100,800 images for our experiments and split it
randomly into 75% for training and 25% for testing.

2.2 Real-world Twitter Data

To evaluate the performance of the methods investigated in this work in a re-
alistic scenario, we collected images posted on Twitter during two major flood
events in Germany: The flood of July 2017 in the Harz region caused severe
damages to buildings, public infrastructure, and dikes in many cities in the cen-
ter of Germany. In January 2018, a flood of the river Rhine in western Germany
affected one of the largest German cities, Cologne, so that we can expect a high
number of tweets relating to this flood. We denote these two events as Harz17
and Rhine18 in the following.

We extracted potentially flood-related tweets during these two months from
a database that we constructed using the Twitter Streaming API over the course
of several years. While our method is, in principle, purely image-based and does
not rely on textual cues, the limitations of the API enforced us to pre-filter
tweets based on the appearance of flood-related keywords3. However, the results
still contain numerous unrelated tweets, as can be seen in the top row of Fig. 1.

3 The German keywords were: Hochwasser, Flut, Überschwemmung,
Überschwemmungen, überschwemmt, überflutet, Sturmflut, Pegel.
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(a) Harz17 (b) Rhine18

Fig. 2: Tweets per hour matching a flood-related keyword during the two months
used for our Twitter flood datasets.

Figure 2 depicts the number of tweets per hour containing a flood-related
keyword during the two months under observation. The increase in flood-related
Twitter activity during late July 2017 and early January 2018 is clearly visible.

At the time of writing, 3,314 out of the 3,765 images posted on Twitter
during these months were still accessible. After a near-duplicate removal step
using feature similarity and manual inspection of suspect duplicates, 704 images
remain for the Harz17 dataset and 1,848 for the Rhine18 dataset.

We asked two experts from hydrology to annotate these datasets according to
the same criteria as the European Flood 2013 dataset. Due to the high number
of images and limited resources, each image was annotated by a single expert.

3 Methods

We compare three methods for filtering relevant tweets: an objective-agnostic
baseline relying on textual keywords and the date of the tweet, a retrieval ap-
proach, and a classification-based method.

Text-Time-based Baseline: As a näıve baseline ignoring the image contents, we
rank all tweets containing a flood-related keyword by the proximity of their time
of posting to the hour of maximum tweet frequency during the flood event.

Filtering by Retrieval: In a general content-based image retrieval (CBIR) sce-
nario, the user initially provides a set of query images represented by feature
vectors Q = {q1, . . . , qm} ⊂ RD and the system then ranks the images in the
database by decreasing similarity of their feature vectorsX = {x1, . . . , xn} ⊂ RD

to the queries. Since we are not focusing on interactivity in this work but on a
fixed set of search objectives, we relieve the user from the burden of specifying
query images and fix Q to the set of “ideal queries” for the respective task from
the European Flood 2013 dataset.

For computing the similarity between an image feature vector x ∈ X from
the database and all queries, we use kernel density estimation (KDE), inspired
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by Deselaers et al. [4]:

sim(x,Q) =
1

|Q|
∑
q∈Q

exp
(
−γ · ‖x− q‖2

)
. (1)

The hyper-parameter γ ∈ R+ is tuned on the training set of the European Flood
2013 dataset. The exact value can be found in Table 1.

To compute feature vectors describing the images, we employ convolutional
neural networks (CNNs), which learned important image features such as, e.g.,
the appearance of certain shapes or textures, from large amounts of data. First,
we use features extracted from the last convolutional layer of a VGG16 archi-
tecture [11] and a ResNet-50 architecture [7], both pre-trained on 1.2 million
images from ImageNet [10]. These regional features are averaged and finally L2-
normalized, resulting in a 512-dimensional feature space for VGG16 and 2048
features for ResNet-50. The images are initially resized and cropped to 768×512
or 512× 768 pixels, depending on their orientation. This resolution corresponds
to the median aspect ratio (3:2) in the Twitter datasets.

Secondly, we examine the use of features optimized for instance retrieval:
The Deep R-MAC architecture [6] is based on ResNet-101 and aggregates 2048-
dimensional image features across several regions of interest and image reso-
lutions, decorrelates them using PCA, and finally applies L2-normalization. It
has been pre-trained on a landmark dataset using a metric learning objective
that forces similar images to be closer than dissimilar images by a pre-defined
margin. This representation has been identified by Barz et al. [1] to be more
powerful than VGG16 features for interactive flood image retrieval, but they did
not compare it with other ResNets trained on different datasets (e.g., ImageNet).

Filtering by Classification: For each of the search objectives defined in Sec-
tion 2.1, we train a binary linear support vector machine (SVM) [3] using all
images from the European Flood 2013 dataset annotated as relevant for that
task as positive example and all remaining images as well as the images from
the Flickr100k dataset as negative examples. We examine the same image fea-
tures used for the retrieval technique (see above) and optimize the regularization
hyper-parameter C ∈ R+ of the SVMs using 5-fold cross-validation on the train-
ing set. The resulting value for all network architectures can be found in Table 1.

Table 1: Values of the hyper-parameters γ for retrieval and C for classification.

VGG16 ResNet-50 Deep R-MAC

γ 10.0 5.0 5.0
C 2.5 0.5 0.005



Finding Relevant Flood Images on Twitter using Content-based Filters 7

4 Experiments

We evaluate the performance of the different approaches and feature representa-
tions in two scenarios: First, we investigate a ranking task, where all images in
a given dataset should be ranked according to their relevance, from the most to
the least relevant. This corresponds to a post-hoc analysis of the event, where
all potentially useful images have already been collected from the web and an
analyst will go through the ordered list. This approach avoids hard decisions,
which are prone to erroneously excluding relevant images, but instead allows the
analysts to decide when to stop, while they go through the ranked list.

Second, we turn our attention to an on-line filtering task, which is more
suitable for a rapid flood impact analysis scenario. In this setting, the event is
still ongoing, and we need to decide for every newly posted image immediately
whether it is worth looking at or irrelevant.

4.1 Ranking Images by Relevance

The ranking scenario reflects a classical retrieval task, and we hence use estab-
lished retrieval metrics for our experimental evaluation: average precision (AP)
and its mean (mAP) over the three search objectives. AP assesses the quality of
the entire ranking of all images by computing the area under the precision-recall
curve. Recall is the fraction of all relevant images found up to a certain position
in the ranking and precision is the fraction of images among those found up to
this position that are relevant.

The results for both the European Flood 2013 dataset and our two novel
Twitter datasets are given in Table 2. In addition, the precision-recall curves in
Fig. 3 provide detailed insights into the performance for different recall-precision
trade-offs on the European Flood 2013 test set and a combination of the two
Twitter datasets.

On the European Flood 2013 dataset, the classification-based approach out-
performs retrieval by a large margin. ResNet-50 features work best for both
approaches across all tasks. This is an interesting finding because Barz et al. [1]
identified Deep R-MAC as the best representation on this dataset, but only
compared it with VGG16 and not with ResNet-50.

These findings transfer well to the Harz17 dataset, where classification with
ResNet-50 features performs best as well on average. It also performs quite well
on the Rhine18 dataset but is slightly outperformed there by VGG16 features,
which provide surprisingly good results on that dataset only.

On both Twitter datasets, our approach efficiently filters images relevant
for the flooding and depth task, but performs much worse for the pollution
task than on the European Flood 2013 data. First, there are very few relevant
pollution images on Twitter (0.5% in our dataset). Secondly, we observed that
reflections on the water surface were often mistaken for oil films. This difficult
category certainly requires more work in the future, parts of which should focus
on collecting dedicated pollution image data for a more robust evaluation.
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Table 2: AP for all tested methods on all datasets. Numbers are in %. The best
value per column is set in bold. Cls. = Classification, Ret. = Retrieval.

European Flood 2013 Harz17 Rhine18

Method Flood Depth Poll. mAP Flood Depth Poll. mAP Flood Depth Poll. mAP

Text-Time-based — — — — 45.6 30.5 0.6 25.6 41.7 21.4 0.3 21.1

Cls. (VGG16) 80.7 65.2 56.0 67.3 84.1 66.8 3.4 51.4 82.5 66.4 2.4 50.4

Cls. (ResNet-50) 92.1 77.8 90.4 86.8 86.4 71.1 9.6 55.7 83.1 65.2 1.0 49.8

Cls. (Deep R-MAC) 92.0 77.1 70.9 80.0 86.9 70.8 3.1 53.6 81.5 59.5 1.0 47.3

Ret. (VGG16) 62.0 53.2 14.0 43.1 71.2 58.4 0.5 43.4 76.2 63.4 0.7 46.7

Ret. (ResNet-50) 69.6 54.2 37.5 53.8 64.7 53.7 1.0 39.8 75.2 61.0 1.1 45.8

Ret. (Deep R-MAC) 62.8 46.4 28.4 45.9 83.3 64.6 2.9 50.3 80.1 60.0 1.3 47.1
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Fig. 3: Precision-recall curves for the European Flood 2013 test set (top row)
and the combined Twitter datasets (bottom row).

The discrepancy between the performance of the retrieval approach and the
classification-based approach is not as big on the Twitter data as on the Eu-
ropean Flood 2013 dataset, because the classifiers were trained on the domain
of the latter. That ranking by classification scores outperforms the classical re-
trieval approach is simply due to the closed-world scenario we employed in this
work: Retrieval as done by Barz et al. [1] is more suitable for an open world,
where the categories searched for by the user are not known in advance. Re-
stricting the filter to the three categories defined in Section 2.1, however, gives
classification an advantage by being optimized for these particular tasks.

The qualitative examples shown in Fig. 1 illustrate that our approach effec-
tively filters out irrelevant images such as memes and still images from TV shows.
For each search objective, the images more relevant for that objective are ranked
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Table 3: Best possible F1-score (in %) that can be obtained with each method.

Harz17 Rhine18

Method Flood Depth Poll. Avg Flood Depth Poll. Avg

Text-Time-based 59.5 43.7 3.4 35.5 59.9 38.6 0.9 33.1

Classification (VGG16) 78.6 64.6 20.0 54.4 78.8 62.4 16.7 52.6

Classification (ResNet-50) 81.1 68.7 33.3 61.0 79.1 61.8 8.7 49.9

Classification (Deep R-MAC) 81.2 66.5 12.5 53.4 76.5 61.1 5.0 47.5

Retrieval (VGG16) 65.0 55.1 1.6 40.6 70.6 60.0 4.1 44.9

Retrieval (ResNet-50) 58.4 52.0 5.4 38.6 69.5 58.1 7.1 44.9

Retrieval (Deep R-MAC) 77.3 64.9 9.3 50.5 76.3 57.8 5.6 46.6

higher than other images of the flood. These examples from the Harz17 dataset
were generated using the classification approach with ResNet-50 features.

4.2 On-Line Filter with Hard Decisions

In the scenario of filtering a stream of incoming images, a hard decision about the
relevance of individual images must be enforced. This can be done by threshold-
ing the scores predicted by the SVMs in case of the classification-based approach
or thresholding the distance to the query images in case of retrieval. Due to this
hard decision, we only obtain one pair of recall and precision values on each
of our Twitter datasets, in contrast to the retrieval setting. We combine these
by computing the so-called F1-score, which is the harmonic mean of recall and
precision. The maximum F1-scores over all possible thresholds are shown in Ta-
ble 3. This means, we assume that an optimal threshold has already been found,
which usually needs to be done using held-out training data or cross-validation.

In this scenario, the superiority of the classification-based approach is more
pronounced as in the retrieval setting. Again, we can observe that VGG16 fea-
tures only perform well on the Rhine18 data, while ResNet-50 features provide
best or competitive performance for both datasets. Averaged over both datasets,
classification with ResNet-50 features achieves a precision of 73% and a 89% re-
call for the flooding task and a precision of 65% with a recall of 67% for the
depth task. This illustrates the benefit of using machine learning for filtering
relevant social media images, since only every fourth image passing the filter
will not show flooding, while still 89% of all relevant images are found. If one
would aim for 99% recall, the precision on the flooding task would still be 54%.

5 Conclusions

We presented an automatic filter for images posted on Twitter with respect
to their relevance for obtaining various information about floodings and rapidly
assessing flood impacts, so that response and recovery can be coordinated quickly
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and adequately. To this end, we have shown that classifiers trained on data
from Wikimedia Commons can be applied successfully to real Twitter data.
While retrieval-based approaches used in the past are flexible and enable the user
to refine the results easily by giving feedback, classification is faster, does not
require interactivity, and provides better filtering performance, which makes it
more suitable for gaining insights rapidly during the event from streaming data.
Thus, we recommend our classification model based on ResNet-50 features for use
in practice, since it provides best or at least competitive performance across tasks
and datasets. A realistic application scenario, however, poses further challenges:
Since many images posted on Twitter lack accurate geodata, a technique for
automatic geolocalization of tweets or images is crucial. In this work, we focused
on finding relevant images, and leave the geolocalization to future work.
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