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Abstract. Content-based image retrieval has seen astonishing progress
over the past decade, especially for the task of retrieving images of the
same object that is depicted in the query image. This scenario is called
instance or object retrieval and requires matching fine-grained visual
patterns between images. Semantics, however, do not play a crucial role.
This brings rise to the question: Do the recent advances in instance
retrieval transfer to more generic image retrieval scenarios?
To answer this question, we first provide a brief overview of the most
relevant milestones of instance retrieval. We then apply them to a semantic
image retrieval task and find that they perform inferior to much less
sophisticated and more generic methods in a setting that requires image
understanding. Following this, we review existing approaches to closing
this so-called semantic gap by integrating prior world knowledge. We
conclude that the key problem for the further advancement of semantic
image retrieval lies in the lack of a standardized task definition and an
appropriate benchmark dataset.

Keywords: Content-based Image Retrieval · Instance Retrieval · Object
Retrieval · Semantic Image Retrieval · Semantic Gap.

1 Introduction

One sees well only with the heart. The essential is invisible to the eyes.

This famous quote from the French writer Antoine de Saint Exupéry applies
to life as well as to computer vision. The human perception of images greatly
exceeds the visual surface of pixels, colors, and objects. The meaning of an image
cannot simply be described by enumerating all objects contained therein and
defining their spatial layout. We as humans are able to grasp a plethora of diverse
and complex information contained in an image at first glance, such as events
happening in the depicted scene, activities performed by persons, the relationships
between them, the atmosphere and mood of the image, and emotions transported
by it. Many of these concepts elude textual description and are best illustrated
by providing an example image.

The example in Fig. 1 illustrates this variety of information conveyed by
images. The image depicted there can be described from several perspectives:

https://link.springer.com/
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OBJECTS 

Maid ≺ Woman ≺ Person 

Black dress 

Wardrobe ≺ Furniture 

Window 

Liselund Castle ≺ Castle 

SCENE 

Old-fashioned room 

 Sunlit room 

Woman in front of window next to wardrobe 

Room ≺ Indoor 

ACTIVITIES 

Daydreaming 

Looking out of the window 

META 

„The Dream Window in the Old Liselund Castle“ 

 ≺ Painting by G. Achen 

 ≺ Oil on canvas 
Painting ≺ Artwork 

MOOD 

Melancholic 

Feeling locked in 

Fig. 1. An example for the ambiguity and semantic richness of images. All concepts
listed on the right-hand side could be used to describe the image on the left, while
different observers will pay attention to different subsets of these aspects. Moreover, some
concepts can be organized hierarchically, indicated by the “≺” sign, which designates
the hyponomy (“is-a”) relationship.

its semantic content, artistic style, the emotions it evokes in the observer, or
meta-information about the image itself. Depending on their background and
the situational context, different observers will perceive and interpret this image
differently. Searching for images on the web by means of textual descriptions
or keywords is hence destined to fail, because most images are not exhaustively
described in their surrounding text, for mainly two reasons: First, it is often
difficult, if not impossible, to enumerate all aspects of an image explicitly, due
to the potentially infinite amount of possible interpretations. Secondly, it is not
necessary to do so, since most facets of an image are directly available to the
viewer by simply looking at it. The textual description therefore focuses most
often on the meta-information that is not encoded in the image itself, such as its
author. The image shown in Fig. 1, for example, would probably be described as
a photographic reproduction of the painting “The Dream Window in the Old
Liselund Castle” by Georg Achen. This would prevent this image from being
found by users searching for images of a woman looking out of a window, images
showing the activity “daydreaming”, or images with a melancholic atmosphere.

Searching through a large database of images not with textual keywords
but using a representative example as query is hence the most natural, direct,
and expressive way of finding images with a particular content, which might be
complex and difficult to define. This approach is known as content-based image
retrieval (CBIR) [49] and has been an active area of research since 1992 [31,36].
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“Pictures have to be seen and searched as pictures”, wrote Smeulders et
al. [49] in their extensive survey at the end of the “early years” of CBIR in 2000.
During the two decades that have passed since then, the field of content-based
image retrieval has undergone at least two major revolutions (more on that in
Section 2). However, most of the main challenges and directions had already been
identified back then. One of these challenges is the semantic gap, as Smeulder et
al. call it:

“The semantic gap is the lack of coincidence between the information
that one can extract from the visual data and the interpretation that the
same data have for a user in a given situation.” [49, sec. 2.4]

Phrased with the words of de Saint Exupéry, the semantic gap is the difference
between perceiving an image with the eyes—objectively, as a depiction of objects,
shapes, textures—and perceiving an image with the heart—subjectively, including
world-knowledge and emotions, reading “between the pixels”.

The size of the semantic gap depends on the level of abstraction of the search
objective pursued by the user. Smeulders et al. [49] define this level of abstraction
on a continuous scale between the two poles of a narrow and a broad domain. This
terminology is best explained on the basis of the three currently most relevant
CBIR tasks, depicted in Fig. 2:

Duplicate retrieval searches for images with exactly the same content. These
are variants that originated from the same photo but might have been post-
processed differently with regard to cropping, scaling, adjustments to color,
brightness, contrast etc.

Instance retrieval searches for images that depict the same instance of an ob-
ject, i.e., a person or a certain building. Thanks to its nature as a well-defined
but non-trivial task with a clear ground-truth, this is the most extensively
studied CBIR sub-task [48,38,29,30,25,4,3,50,20,42,46,9]. A handful of estab-
lished datasets are available for this task [28,39,40,43] and significant progress
has been made during the past few years, which we will outline in Section 2.

Semantic retrieval covers most of the remaining spectrum broader than in-
stance retrieval and aims for finding images belonging to the same category
as the query. It is important to note that category does not necessarily mean
object class in this context. In practice, the set of possible categories is limited
by nothing but the imagination of the user and a single image usually belongs
to a remarkably high number of categories at once (see Fig. 1). Thus, the
exact search objective of the user can rarely be determined based on the
query image alone and will almost certainly also vary between users, even
for the same query. Therefore, approaches to this problem often comprise
interaction with the user to adapt the similarity measure used by the system
to that in the user’s mind [55,12,15,5,7].
Learning meaningful image representations that capture fine semantic dis-
tinctions and the various facets of an image’s meaning is hence of paramount
importance. Despite its practical relevance, this CBIR sub-task has received
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 Semantic 

Retrieval 

 Duplicate 

Retrieval 

 Instance 

Retrieval 

Fig. 2. Examples for three different sets of images to be retrieved given the same query
depending on the type of the CBIR task.

substantially less attention than instance retrieval, mainly due to the less
well-defined notion of “relevance” and “similarity” and, as a result, the lack
of a suitable benchmark. In this work, we will review recent approaches to
semantic image retrieval (see Section 4) and assess the current state of the
semantic gap, twenty years after the end of the “early years” of CBIR.

Duplicate retrieval marks one end of the spectrum, as it is the narrowest domain
possible. In this case, the semantic gap is almost non-existent and all that is
needed to overcome it is a list of invariances regarding the image’s content (e.g.,
rotation, cropping etc.). The broader the domain, the larger the semantic gap.

While it is more challenging than duplicate retrieval, instance retrieval can
still be handled by matching fine-grained distinctive visual patterns and their
geometric layout. Content-based image retrieval has made substantial progress
in this area in the past two decades, which we outline in Section 2. However, the
applicability of such techniques is limited with respect to the much more generic
broad domain of semantic retrieval, as we see in Section 3. One way to overcome
this semantic gap, according to Smeulders et al. [49], lies in integrating sources
of semantic information from outside the image. In Section 4, we review recent
approaches in this direction, followed by a discussion of what is still missing for
advancing CBIR in the broad domain further (Section 5).
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2 The Evolution of Instance Retrieval

Between 2000 and 2020, CBIR—with a particular focus on instance retrieval—
has undergone two major paradigm shifts: The first began in 2003 [48] and was
initiated by the adaptation and subsequent improvement of techniques from text
retrieval. The second wave of breakthrough achievements originated from the
application of deep learning methods to CBIR, starting in 2014 [4,45]. We outline
the major milestones of these two epochs of innovation in the following.

2.1 Hand-Crafted Features and Visual Words

Local Features as Visual Words In 2003, Sivic and Zisserman [48] sought
to find occurrences of a certain object in videos and, to this end, adapted the
bag-of-words (BoW) document descriptor, which is popular in the field of text
retrieval, to image retrieval. As an analogy for words, they use local image
features at distinctive keypoints and quantize them into a vocabulary of “visual
words” using the k-Means clustering algorithm. Analogously to text retrieval,
the occurrences of visual words per image are counted and the counts aggregated
into a tf-idf vector representing the entire image. Since the Euclidean distance is
not meaningful in high-dimensional spaces, the cosine similarity is then used to
assess the similarity of two such image representations.

This process illustrates the general framework for extracting image represen-
tations that has been used in CBIR from that point on until today [30]: A local
feature extractor computes features at keypoints in a given image. These local
features are then embedded into a different space, such as quantized indices of
visual words. Finally, they are aggregated into a global representation.

The global representation allows for efficient retrieval of an initial list of
candidate images. In addition, the local features are often used to perform a
spatial verification and re-ranking step for the top-ranking candidates to eliminate
false matches [48,39]. This technique is quite specific to instance retrieval and
matches local feature vectors between the query and a retrieved image to verify
that the local features have a matching geometric layout.

Towards More Complex Embeddings Subsequent works of this epoch fo-
cused mainly on improving the embedding and aggregation step, while using
the same local feature extractor over the course of a decade. The Hessian-affine
detector [34] is typically used for finding keypoints at which local features should
be extracted. This detector finds point of interest that are invariant to affine
transformations as well as robust to limited changes of illumination and viewpoint.
These keypoints are then described using SIFT [33] or RootSIFT [1] features.
The latter is a simple transformation of SIFT, which consists in L1-normalizing
the SIFT vector and taking the element-wise square root. In the resulting space,
the Euclidean distance between RootSIFT vectors corresponds to a histogram
matching kernel in SIFT space.

In the case of Sivic and Zisserman [48], the embedding transforms each local
feature vector into a space of one-hot vocabulary index vectors with tf-idf weights.
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The aggregation then simply consists in a sum operation. However, representing
local feature vectors by a single integer (the cluster index), incurs a severe loss of
information and does not capture the actual distribution of the local features
well. Hard assignment to a single cluster is furthermore not robust against small
variations of local descriptors close to cluster boundaries. To overcome these issues,
Perronnin et al. [38] propose the use of Fisher vectors for CBIR. The training
data is quantized into visual words by fitting a Gaussian mixture model. Each
local feature vector is then transformed into the gradient of its log-likelihood with
respect to the means of the Gaussians. This realizes a weighted soft assignment
to clusters and results in a dense, more informative, but also high-dimensional
descriptor. In fact, the authors show that a Fisher vector with a single visual
word achieves comparable performance to a BoW descriptor with 4,000 words.

A simplification with comparable and sometimes even superior performance
are vectors of locally aggregated descriptors (VLADs), proposed by Jégou et
al. [29]. VLAD still uses hard-assignment of local descriptors to the nearest
cluster, but captures the element-wise residuals of all local features from the
center of their cluster. That means, the embedding feature vector is partitioned
into k segments, where k is the number of clusters. The segment corresponding
to the closest cluster center equals the difference between the local descriptor and
that center and all other segments are 0. The dimensionality of the embedding
space is hence the number of clusters times the local feature dimensionality. The
aggregation consists in taking the sum over all transformed local feature vectors,
L2-normalizing the result, and applying PCA with whitening to reduce the high
dimensionality of the global descriptor to something more manageable (usually
in the order of a few hundred dimensions).

VLAD is, by definition, sensitive to the distance between a local feature vector
and its cluster center. However, the Euclidean distance is of limited meaning in
high-dimensional spaces. In a follow-up work, Jégou and Zisserman [30] account
for this fact by L2-normalizing the residuals, thus encoding their angle instead of
their magnitude, which gives rise to the name triangulation embedding. Because
distance is not meaningful, hard assignments to single clusters are not reasonable
either. Triangulation embedding hence encodes the angles between the local
feature vector and all visual words. This representation is subsequently whitened
and has been found to outperform fisher vectors and VLAD.

However, Husain and Bober [25] find that comparing each local feature vector
with all visual words does not scale to large datasets. Soft cluster assignment,
on the other hand, often behaves unstable and degrades to single assignment
in practice. To overcome this, they propose a middle ground by assigning the
local descriptors to the few cluster centers that are closest and base the weights
on their ranks among the nearest neighbors instead of their actual distances.
These robust visual descriptors (RVDs) are furthermore not whitened globally
but on a per-cluster level. The authors found that RVD performs competitively
to triangulation embedding, while being faster to compute and more robust to
dimensionality reduction.
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The Role of Datasets While the paradigm of using aggregated local features
for CBIR dates back to 2003 [48], research in this area has been most active
between 2010 and 2016. One likely reason for this delay is the lack of suitable and
established benchmark datasets. In the years 2007 and 2008, the Oxford Buildings
[39], Paris Buildings [40], and INRIA Holidays [28] datasets were published, which
quickly emerged as the standard benchmarks for instance retrieval and gave new
impetus to the field by providing a proper ground for evaluation and comparison
of methods.

The two building datasets comprise different photos of various landmark
buildings in Oxford and Paris, with a large variety of perspectives, scales, and
occlusions. The Holidays dataset, on the other hand, contains a collection of
personal holiday photos with on average three different perspectives per scene.
While these datasets are challenging, the task of retrieving images showing the
same object or scene as the query is well-defined with a clear ground truth.

2.2 Off-the-shelf CNN Features

After hand-crafted local features had remained unquestioned in CBIR for over
a decade, the renaissance of deep learning finally led to a substantial change
regarding image representations. The independent works of Babenko et al. [4] and
Razavian et al. [45] first showed that surprisingly good results can be achieved
by simply extracting global image descriptors, so-called neural codes, from the
first fully-connected layer of an off-the-shelf CNN pre-trained on ImageNet [14].
Given the extreme simplicity of this approach, requiring close to zero engineering
effort compared to detecting keypoints, extracting local features, and aggregating
them, this was a remarkable result. Just a year later, Babenko and Lempitsky [3]
considerably improved the performance of this approach by extracting image
features not from a fully-connected but from the last convolutional layer, which
still has a spatial resolution. The result is, thus, a set of feature vectors, which
can roughly be associated with different regions in the image. These are summed
up for aggregation, L2-normalized, reduced in dimensionality using PCA, and
L2-normalized again, leading to the speaking name sum-pooled convolutional
features (SPoC) for these descriptors.

In the following years, research mainly adhered to using such pre-trained
neural feature extractors and focused on designing sophisticated aggregation
functions. Many of them try to find a middle ground between sum and maximum
pooling, e.g., by averaging activations over the top few responses only as in
partial mean pooling (PMP) [54], or by smoothly interpolating between the two
extremes as in generalized-mean pooling (GeM) [42].

Aggregated convolutional features have one drawback, though: As opposed
to traditional local features, they do not allow for precise localization of the
matching object and, thus, are not compatible with techniques such as spatial
verification and re-ranking, which depend on geometric information. To this
end, Tolias et al. [50] propose the regional maximum activation of convolutions
(R-MAC) aggregation, which follows a two-step approach: The convolutional
feature map is divided into overlapping regions of different sizes and the local
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feature vectors in each region are aggregated using maximum pooling. These
so-called MAC vectors are then whitened and aggregated by sum pooling into
a global R-MAC image descriptor. For spatial re-ranking, the similarity of the
query’s MAC vector and the individual regional MAC vectors of the top few
retrieval results can be used to localize the query object in the retrieved images
and refine the ranking.

These techniques took CBIR based on features extracted from pre-trained
CNNs quite far, but the hand-crafted RVD descriptor [25] is still able to compete
with them on instance retrieval benchmarks.

2.3 End-to-end Learning for Image Retrieval

Deep learning finally became undeniably superior to traditional CBIR techniques
based on hand-crafted features when researchers began to adapt the CNN used
for feature extraction to the task of image retrieval instead of using a pre-trained
one. We regard this shift of focus from feature transformation and aggregation
to actual feature learning as the second important paradigm shift in CBIR.

Global Features Gordo et al. [20] were among the first to be successful in this
endeavor and set the state of the art in instance retrieval for at least two years.
They build upon R-MAC [50] and implement it as differentiable layers on top of
a VGG16 CNN architecture, which can then be trained end-to-end. To this end,
they employ the triplet loss [47], a training objective from the field of deep metric
learning. By training on a curated dataset of famous landmarks, they learn a
feature representation where images of the same landmark are closer together
by a certain margin than two images of different landmarks, which supports the
objective of instance retrieval.

This approach has later been extended by extracting R-MAC features from
multiple layers of a CNN and weighting individual features of each region by the
Kullback-Leibler divergence between the distributions of the Euclidean distance
between matching and non-matching descriptors, so that more discriminative
regional features obtain a higher weight [26]. The motivation for combining
features from multiple layers lies in the different degrees of visual abstraction:
features from earlier layers are more indicative of visual properties, while later
layers provide a semantically more abstract representation.

As opposed to the triplet loss, Radenović et al. [42] find the contrastive loss to
provide better final performance, while furthermore requiring only pairs instead
of triplets of images for training. More importantly, they propose an unsupervised
technique for generating training data consisting of matching and non-matching
image pairs for instance retrieval without human annotation: Images in the
training dataset are clustered based on their BoW representation using local
RootSIFT features and spatial verification is applied to ensure that all images in
a cluster show the same object. A 3-D model is then constructed for each cluster
using structure-from-motion (SfM) techniques, so that it can be determined
from these models whether two images depict the same object or not. This also
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allows images of the same landmark but captured from different and disjoint
viewpoints to be considered as non-matching. The information about camera
positions obtained from SfM furthermore enables mining of challenging positive
image pairs that exhibit a non-trivial amount of overlap.

These metric learning approaches have led to an impressive improvement of
instance retrieval performance in terms of average precision (AP), even though
they do not optimize it directly but a proxy objective based on distances in
the learned feature space. Since AP is the most important metric for evaluating
retrieval methods, it seems desirable to optimize it directly instead of a proxy-task.
However, that entails taking into account not only a single sample, a pair, or a
triplet as before, but the entire list of ranked results. One apparent benefit is
that such listwise objectives are position-sensitive: The impact of a single pair
or triplet involving images at the top of the ranking should be higher than at
the end of the list. However, average precision is not differentiable, because it
involves sorting images by their similarity to the query. For being able to optimize
AP in an end-to-end learning context nevertheless, He et al. [22] proposed a
differentiable approximation of AP using histogram binning, which has been
adopted by Revaud et al. [46] for CBIR and improved the state of the art. Since
the cosine similarity, which is usually employed for retrieval, is bounded in [−1, 1],
the range of possible similarity scores can easily be divided into a fixed number
of equally sized bins. Images are then soft-assigned to the bins whose centers
are closest to the image’s retrieval score to obtain histograms of positive and
negative match counts in each bin. Instead of computing precision and recall for
each possible position in the ranking, these metrics can now be computed for
each bin and combined to approximate AP.

However, the quantization of similarity scores into bins ignores variations of
the ranking within each bin, which can have particularly large impacts on AP
at the top positions of the ranking. This deficiency has recently been overcome
by a different approach to approximating AP: Instead of quantized sorting by
binning, the sorting operation itself is relaxed by replacing the Heaviside step
function indicating whether one element of the list precedes another with a
sigmoid function to avoid vanishing gradients [41]. This allows for differentiable
sorting and computation of a relaxed version of AP, called Smooth-AP [9].

With these listwise approaches, global representations for CBIR can finally be
learned end-to-end without hand-crafted intermediate steps or proxy objectives.

Local Features While global image descriptors are convenient for retrieval
applications, they are neither robust in the presence of occlusion or background
clutter nor suitable for spatial verification, which is an important technique for
instance retrieval. Other works hence aimed at learning local feature detectors
and descriptors in an end-to-end manner.

Deep Local Features (DELF) [37], for example, uses coarse regional features
extracted from a convolutional layer of a pre-trained CNN and then trains another
small CNN to assess the importance of these densely sampled keypoints. For
training, these predicted weights are used for weighted sum pooling of the local



10 B. Barz and J. Denzler

descriptors into a global feature vector, which allows for fine-tuning of the local
features using image-level supervision.

Most instance retrieval systems using local features adopt a two-stage ap-
proach: First, a set of candidate images is retrieved by comparing global features
and then re-ranked using spatial verification based on local features. Cao et
al. [10] unified the learning of both types of features into a single model with
two branches: One branch aggregates all feature vectors of the last convolutional
layer of a CNN as global feature vectors and is trained with a metric learning
loss. The other branch learns an attention module to identify distinctive local
features and is trained using categorical cross-entropy.

The Need for More Challenging Benchmarks Besides plenty of computing
capacity, deep learning techniques require one thing most of all: data. The existing
instance retrieval datasets were too small for training deep neural networks,
wherefore Babenko et al. [4] created a novel landmarks dataset with over 200,000
images for training purposes, which was later used by other works on deep image
retrieval as well [20]. Nowadays, the large-scale Google-Landmarks dataset [37]
proposed in 2017 is often used for training. It comprises over a million images of
12,894 landmarks from all over the world.

These datasets are orders of magnitudes larger than the Oxford and Paris
Buildings dataset, but the latter were still relevant for evaluating and comparing
novel methods. The rapid advances in deep learning for CBIR, however, quickly
resulted in a saturation of performance on these benchmarks. Therefore, Raden-
ović et al. [43] revisited these two datasets in 2018 by improving the ground-truth
annotations, finding more difficult queries, adding challenging distractor images,
and defining three different evaluation protocols of varying difficulty.

These developments demonstrate the importance of suitable training and
benchmark datasets for the advancement of content-based image retrieval.

3 Impact on the Semantic Gap

The previous section outlined the impressive advances of instance retrieval in the
deep learning era. However, instance retrieval is a rather narrow domain, where
a broad understanding of the scene semantics are not required to solve the task
satisfactorily. The interesting question is, therefore: Do these advances transfer
to the broader domain of semantic retrieval?

To answer this question, we evaluate several seminal methods and models
on an instance retrieval and a semantic retrieval task. For instance retrieval, we
use the Revisited Oxford Buildings dataset [39,43] (see above), on which these
methods have originally been evaluated. As an indicator for their performance
in a broader domain, we evaluate them on the MIRFLICKR-25K dataset [24],
which comprises 25,000 images from Flickr, each annotated with a subset of
25 concepts such as “sky”, “lake”, “sunset”, “woman”, “portrait” etc. While
most images in the dataset are annotated with more than one concept, 3,054 of



CBIR and the Semantic Gap in the Deep Learning Era 11

Neural Codes [4] MAC [44] SPoC [3] R-MAC [50] Deep R-MAC [20] Listwise [46]

0.3

0.4

0.5

0.6
M

ea
n

A
ve

ra
ge

P
re

ci
si

on

ROxford-Medium

MIRFLIRCK-25K

Fig. 3. Milestones of CNN-based instance retrieval, evaluated on an instance retrieval
(ROxford [43]) and a semantic retrieval dataset (MIRFLICKR-25K [24]).

them exhibit only a single label. We use these images as queries to avoid query
ambiguity. We consider a retrieved image as relevant if it shares this concept.

Figure 3 depicts the mean average precision of several milestones of CBIR
research in the deep learning era on both tasks. While the performance on instance
retrieval tasks increased steadily, the semantic retrieval performance did not
only not improve, but even deteriorated slightly. The majority of developments
in the past years have focused on instance retrieval and hence tuned feature
representations towards this tasks, for which fine-grained visual features are
important. This, however, degraded their performance on broader-domain tasks,
for which a different set of features is necessary.

While instance retrieval has reached a very advanced level of maturity during
the past 20 years, content-based image retrieval in general is still facing the
challenges of the semantic gap.

4 Knowledge Integration for Semantic Image Retrieval

One way to overcome the semantic gap lies in incorporating additional sources
of information outside the image, as Smeulders et al. [49] already stated back
in 2000. In the following, we briefly review the most common sources of such
external information as well as approaches for leveraging them to improve image
representations for semantic image retrieval.

4.1 Class Labels

Image-level class labels are one of the most frequently available and cheapest
types of semantic information about images. To provide robust performance in
an open world, however, a huge number of classes or sophisticated methodology
beyond training a simple classifier is required.
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OASIS [11] combines both: Method-wise, OASIS learns a bilinear similarity
metric using the triplet loss for comparing hand-crafted features with respect
to semantic image similarity. The training dataset consisted of over two million
images sourced from Google Image Search using about 150,000 textual queries
entered by real users. Working at Google, the authors did not only have access
to these queries, but also to relevance ratings based on click statistics, which
allowed them to collect this large-scale but non-public dataset.

With the advent of deep learning, Yu et al. [53] exploit the intrinsic hierarchical
representation generated by CNNs by combining features from shallow and deep
layers. While the former capture rather visual patterns, features from deeper
layers are expected to be more abstract and carry semantic information. Despite
this, they only evaluate their approach on instance retrieval benchmarks.

More recent approaches optimize CNNs directly for multiple tasks to learn
diverse representations. MultiGrain [8], for instance, aims for learning features
that are useful for class-level, instance-level, and identity-level recognition by
combining a classification and a metric learning objective. Evaluation, however, is
conducted separately for each task in terms of classification accuracy on ImageNet
[14] and retrieval accuracy on instance retrieval benchmarks. This evaluation
protocol does not provide information about semantic retrieval performance.

To deploy CBIR at production-level within the Microsoft Bing search engine,
Hu et al. [23] employ a large ensemble of different network architectures trained
for various tasks: for classification with cross-entropy loss, with a metric learning
objective such as the contrastive or triplet loss, for face recogmition, or for
object detection. This ensemble is intended to capture a broad variety of both
visual and semantic properties of images and, hence, cover most objectives a
user of the visual search engine could pursue. The training data for this system
is non-public and was collected by human annotators in an expensive data
collection and annotation effort. The evaluation was conducted using human
relevance judgments as well. For these two reasons, this work is neither publicly
reproducible nor directly comparable with other works.

4.2 Class Taxonomies

Plain class labels do not take into account the semantic relationships between
classes. Despite their visual similarity, images of humans and apes, for example,
are generally considered to be semantically much less similar than images of a
caterpillar and a butterfly, although the latter are not particularly similar from
a visual perspective. Taxonomies such as WordNet [16] are a popular tool for
measuring the semantic similarity between classes. They organize concepts on
different levels of abstraction in terms of is-a relationships (“a poodle is a dog is
an animal etc.”). Several works strive for integrating this prior knowledge about
the world to improve the semantic consistency of CBIR results.

Deng et al. [13] construct a hand-crafted bilinear similarity measure from
the class taxonomy of ImageNet [14] and use it for comparing vectors of class
probabilities predicted by a classifier. Instead of a similarity measure, Barz and
Denzler [6] construct a semantic feature space spanned by class embeddings,
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where the cosine similarity between two class embeddings equals their semantic
similarity derived from the taxonomy. They then use a CNN to map images into
the same semantic space. Arponen and Bishop [2] do not constrain the feature
space in this explicit way, but instead integrate the same objective directly into
the loss function, so that the layout of the semantic feature space is learned.
They combine this with an additional term encouraging the individual features
to be binary, which allows for compact and memory-efficient descriptors.

The aforementioned works evaluate their approaches on ImageNet using
“hierarchical precision” [13], which replaces the binary relevance of the retrieval
results used by ordinary precision with the semantic similarity of their class and
the class of the query. This metric suits the task better, but is best plotted for
several cut-off positions in the ranking and cannot easily be summarized in a
single number to facilitate comparison.

Yang et al. [52] combine semantic and visual similarity by first ranking
images according to semantic similarity and then ordering the images within
the same class according to visual similarity to the query. To this end, they use
the contrastive loss with an adaptive margin proportional to the dissimilarity.
The evaluation, however, is limited to fine-grained classification datasets and
conducted using binary relevance, which does not take semantics into account.

Long et al. [32] not only embed the classes but all concepts in the taxonomy
into a hyperbolic space, so that sub-classes lie in their parent class’ entailment
cone. As before, a CNN is then used to map samples onto their class embeddings.
Although their method could also be applied for content-based image retrieval,
they focus on video retrieval and evaluate their approach on that task only.

4.3 Textual Descriptions

While taxonomies provide information about the semantic similarity between
classes, their full semantic meaning goes far beyond that. Several works have
aimed for extracting such rich semantics from textual descriptions of classes or
images and leverage them for learning meaningful image features. DeViSE [17]
and HUSE [35], for example, learn word embeddings on Wikipedia and use the
embedding of a class’ name as its semantic embedding. DeViSE [17] then maps
images into that space by maximizing the dot-product similarity between their
feature vector and the respective class embedding, while enforcing a certain
minimum distance to any other class embedding. HUSE [35], in contrast, adopts
a pair-wise optimization approach by forcing the distance of pairs of images to
be equal to the dissimilarity of their class embeddings. This approach provides
more flexibility regarding the learned image feature space since it is separate
from the space of word embeddings. Like some of the hierarchy-based approaches
described above, both methods were evaluated using hierarchical precision. Thus,
the semantic information used for evaluation was not the same as that used for
training, which incurs a disadvantage compared to hierarchy-based methods.

Instead of using texts associated with classes, other methods leverage texts
belonging to individual images, such as titles and captions, and learn a multi-
modal embedding space. Gomez et al. [19] do so by training a CNN to regress
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the text embeddings generated by a separately trained language model. However,
they evaluate their approach only with textual queries and not in a content-based
image retrieval scenario. Wu et al. [51], in contrast, learn text and image embed-
dings jointly and additionally predict individual embeddings for components of
the caption such as objects, object-attribute pairs, and object-relation phrases.
These semantic components are automatically aligned with the local features of
the corresponding image regions using contrastive learning. However, their exper-
iments only investigate the cross-modal image-to-caption and caption-to-image
retrieval scenarios, while semantic CBIR performance is not analyzed.

4.4 Artistic Style

An entirely different dimension of image semantics is opened up by stylistic
concepts such as artistic style, mood, and atmosphere. Learning image features
that respect such properties requires either specialized annotations or prior
knowledge about their characteristics.

Ha et al. [21] define style in terms of color composition, i.e., the distribution
and layout of colors in an image. They construct a dataset with subjective 5-star
similarity ratings for pairs of images, which have been collected in a laborious
crowd-sourcing process involving active learning. A siamese network is trained to
predict the distribution of similarity ratings for a given pair of images.

To avoid the expensive collection of large-scale style datasets, Gairola et
al. [18] draw on knowledge from the field of visual style transfer, where Gram
matrix features have been found to capture the stylistic properties of images.
They extract these features from a pre-trained CNN, cluster them, and use the
cluster labels as ground-truth for training another CNN using the triplet loss.
They evaluate their approach on numerous datasets annotated with artistic styles,
photographic styles, historical art styles, moods, or genres.

5 The Missing Ingredient

The two lines of research on instance retrieval and semantic retrieval portrayed
in Sections 2 and 4, respectively, exhibit one apparent difference: The research on
instance retrieval shows measurable continuous progress thanks to the Oxford [39]
and Paris [40] benchmark datasets, whose release was followed by a clear surge of
research activity in the field. With the Google-Landmarks dataset [37], sufficient
training data is available for modern deep learning methods. The recent revision
of the two aforementioned benchmark datasets [43] maintains their usefulness as
a benchmark despite the substantial performance improvements.

Existing works on semantic image retrieval, in contrast, vary widely with
respect to their evaluation protocol, training data (some of which is closed-source),
and even the problem definition, rendering a clear comparison between approaches
impossible. This is perhaps the biggest obstacle for further progress in this field
and the likely reason why research still focuses on instance retrieval.
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A thoroughly curated benchmark dataset for semantic image retrieval would
hence greatly contribute to advancing the field. However, constructing such a
benchmark is highly non-trivial due to numerous aspects. This begins already
with the evaluation metric. In a semantic CBIR scenario, precision is often more
important than recall, since most users are not interested in all potentially relevant
images from a large-scale database. Average precision is hence a sub-optimal
measure, but also precision alone is insufficient, since it only considers binary
relevance. In reality, however, relevance is a graded phenomenon [49]. A candidate
for an evaluation metric is the normalized discounted cumulative gain (NDCG)
[27], which is capable of taking into account the degree of relevance between
two images. The dataset, however, also needs to provide such graded relevance
ratings for each pair of query and retrieved image. Ideally, the relevance should
be based on real user ratings, which poses a major annotation effort.

Furthermore, the benchmark should define a diverse set of relevance criteria
a user can have in mind when using a CBIR system, including instance identity,
object category identity on different levels of abstraction, similarity regarding
artistic style, mood, emotions, actions, and relationships portrayed in the image.
Further complications are caused by the fact that a single query image can be
interpreted differently with respect to each of these dimensions. The relevance of
a retrieved image hence does not only depend on the query, but also on the search
objective pursued by the user. This ambiguity can only be resolved by interaction
with the user or by providing multiple query images sharing the relevant aspect.
Therefore, the benchmark should ideally provide different evaluation protocols,
an interactive one and a non-interactive one, which could be restricted to less
ambiguous queries. The interactive scenario furthermore requires the definition
of a feedback simulation protocol.

6 Conclusions

Content-based image retrieval has made astounding progress over the past two
decades, especially in the area of instance retrieval, where a clearly defined
objective and evaluation benchmarks exist. However, the methodological advances
in this area do not translate to the more challenging task of semantic image
retrieval. On the contrary, more advanced instance retrieval methods often
perform worse than simpler ones in that domain. Despite the seeming advances,
the semantic gap has rather become larger than smaller.

Due to the lack of an established benchmark, semantic image retrieval methods
are often hardly comparable and vary widely regarding the task definition and
the evaluation data and protocol. The history of instance retrieval shows that
such a benchmark would be an invaluable catalyst for research on semantic image
retrieval and a necessity for closing the semantic gap.
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