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Abstract

Extrinsically calibrating a multi camera system from scene images is in gen-
eral a very difficult problem. One promising approach uses pairwise relative
poses as input. As a limited number of relative poses suffices, we propose
automatically selecting only the most reliable ones. We present theoretically
sound local and global uncertainty measures on relative poses and a selection
criterion based on these measures. We show that our criterion is equivalent to
computing a shortest subgraph consisting of shortest triangle connected paths
and provide an efficient algorithm. In experiments on synthetic and real data,
we show that our selection algorithm produces greatly improved calibration
results, both, in case of varying portions of outliers as well as varying noise.

1 Introduction
Multi-camera systems become increasingly important in computer vision. For many ap-
plications, however, the system has to be calibrated, i.e. the intrinsic and relative extrinsic
parameters of the cameras have to be determined. Existing methods can be very roughly
classified by the type of input or scene knowledge they require: 1. Pattern based: a clas-
sical (planar) calibration pattern either has to be visible in all images [16] or the poses of
multiple calibration objects have to be known [7]. 2. LED based: some easily detectable,
moving single feature, like an LED in a dark room, is recorded over time [1, 14, 4, 2].
3. Self-calibration (in the broader sense): images are taken from an unknown scene, typ-
ically with some (unknown) 3D structure and texture [12, 15]. Clearly, the third class is
most appealing from a practical point of view, as it is the most flexible one.

From a pure multiple view geometry point of view, multiple camera calibration can
be interpreted as a structure from motion (sub)problem [6]. In case of self-calibration
of multiple physical cameras, however, point correspondences have to be extracted from
images in a medium or wide baseline situation, which typically leads to a very high por-
tion of outliers. In this paper, we focus on such a situation. We want to stress that we
make no assumptions about the scene except that it has some arbitrary 3D structure and
texture. As the relative pose of two cameras can be estimated even in presence of very
many outliers [13, 3], we will use known relative poses between some camera pairs as
input. The quality of the results, of course, highly depends on the relative pose estimates.
This problem has been briefly mentioned by Chen, David and Slusallek [4]. It has been



more recently addressed by Martinec and Pajdla [12, 11]. They weight relative poses by a
measure based on the number of inliers found by RANSAC and also on the “importance”
of a relative pose. While their measure is plausible, a theoretical justification is missing.

A further method has been proposed by Vergés-Llahí, Moldovan and Wada [15]. They
use an uncertainty measure for relative poses, which consists of a residual and a constraint
violation term. Note, however, that constraint violations can be avoided by using the
five point algorithm [13]. Selection of relative poses is performed by finding triangle
connected shortest paths in a graph connecting cameras according to known relative poses
with edge weights set to these uncertainty values. We adopt their graph-based approach.

In this paper, we make the following contributions: We propose three theoretically
sound local and global uncertainty measures on relative poses. As a basis, we use the
work of Engels and Nistér [5], but suggest using the Blake-Zisserman distribution instead
of the Cauchy distribution. Based on these measures, we formulate a sound selection cri-
terion for relative poses. We provide a theoretical justification for the triangle connected
shortest paths approach [15] and present an efficient algorithm. We also formulate the
choice of the reference camera (pair) as an optimization problem, which completes our
selection criterion, and also provide an efficient algorithm for this problem. Experiments
on synthetic and real data show a great improvement of calibration results by our selection
criterion compared to a naïve approach in presence of varying noise as well as varying
outlier portions.

The paper is structured as follows: Section 2 presents the specific problem treated in
this paper and introduces important notation. Section 3 continues with the theoretical and
algorithmic contributions of the paper. In section 4, we present systematic experiments
on simulated and real data. Conclusions are given in section 5.

2 Basics

2.1 Relative and Absolute Poses
We assign a number i ∈ {1, . . . ,n} to each camera and denote the set of all cameras by
V = {1, . . . ,n}. The relative pose between two cameras i and j is denoted by (Ri j, ti j). It
is defined such that it maps a 3D point pi from the ith camera coordinate system to the
jth one as follows: pj = Ri j pi + ti j. The absolute poses (transforming points from world
coordinates to kth camera coordinates) are denoted by (Rk, tk). Note that relative poses
have a double subscript, while absolute poses have a single one. When estimating relative
poses from images only, the scale of ti j cannot be determined. We emphasize unknown
scale by a star: t∗i j. Relative pose estimation will be treated in section 3.1. A multi camera
system together with the set of all known relative poses can be represented by the camera
dependency graph [15] GR = (V,E): each camera is a vertex and camera i is connected
to camera j iff the relative pose (Ri j, t∗i j) is known. An example is given in Figure 1 (left).
Note that edges are directed to distinguish (Ri j, t∗i j) from (R ji, t∗ji). As relative poses can
be easily inverted, however, all edges will be treated as bidirectional.

2.2 Calibration Task from Relative Poses
We assume known relative poses up to scale (Ri j, t∗i j) and seek to compute absolute poses
(Rk, tk) expressed in an arbitrary (but common) world coordinate system up to only one
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Figure 1: From left to right: a camera dependency graph with four cameras and five
known relative poses, the associated triangle graph, and the extended triangle graph.

common, unknown scale factor—in other words, we want to calibrate the multi camera
system up to a 3D similarity transformation. More precisely, calibration is possible up
to one 3D similarity transformation per triangle connected component in the camera de-
pendency graph [10]. We will assume a triangle connected camera dependency graph.
Otherwise, the algorithms can be applied to each component separately.

2.3 Calibration via Triangulation
A triangle in GR consists of three cameras and three known relative poses. If one of the
scales ‖ti j‖ is known (or fixed), the remaining two scales can be computed by triangulation
[6]. By treating one triangle after the other such that all consecutive triangles have a
common edge, all scales can be computed up to one common unknown scale parameter.
The calibration algorithm can be formulated nicely by using the triangle graph GT =

(T ,ET), which is defined as follows (Figure 1, center): each triangle in GR becomes a
vertex in GT, two such vertices are connected iff the two triangles have a common edge
in GR. Once the scales have been estimated, the absolute poses can be extracted from
the relative poses based on the following two equations: R j = Ri jRi and t j = Ri j ti + ti j.
These steps can be integrated into the following relative pose calibration algorithm: First
choose a starting triangle (i, j,k) ∈ T and set ‖ti j‖ = 1, Ri = I, and ti = 0. Then traverse
GT, e.g. via breadth first search (BFS). When visiting a triangle, estimate the missing
scale factors via triangulation and extract the missing absolute poses.

3 Selection of Relative Poses
In the relative pose calibration algorithm, the traversal order is unspecified. Furthermore,
in case of a dense camera dependency graph, only a rather small subset of triangles has
to be visited in order to calibrate all cameras. Thus, the traversal order corresponds to
a selection of triangles and thus relative poses. Vergés-Llahí, Moldovan and Wada [15]
calibrate along shortest triangle connected paths in the camera dependency graph. They
define the weight of a relative pose edge by an uncertainty measure. We adopt that idea.

An uncertainty measure should not only capture the local precision of a relative pose
estimate, but also the global uncertainty caused by ambiguities. Furthermore, it should
be well suited for a theoretically sound formulation of relative pose selection as an opti-
mization problem. The uncertainty measure of Vergés-Llahí, Moldovan and Wada [15]
does not seem to satisfy these criteria. Engels and Nistér [5] proposed a sampling based
approach to estimate the global uncertainty of a relative pose estimate. Base on that, we
will define three uncertainty measures.



3.1 Uncertainty Measures
First, we will briefly summarize their approach in a slightly different formulation (fo-
cussing on the five point variant). LetD denote the set of all point correspondences. The
posterior probability density function of a relative pose (R, t∗) is denoted by p(R, t∗ | D)∝
p(D | R, t∗)p(R, t∗). In the experiments, we assume a flat prior p(R, t∗). Very similar to
Engels and Nistér [5], we define the data likelihood based on the Cauchy distribution as
follows:

p(D | R, t∗) ∝

∏
d∈D

α

α2+ s(R, t∗, d)

|D|
−φ

, (1)

where α is a scale parameter, which is typically set to 1, φwidens peaks of the distribution
(φ = 0.5 is recommended, φ = 0 corresponds to assuming independent point correspon-
dences), and s(R, t∗, d) denotes the Sampson epipolar error [5, 6], which approximates
the squared reprojection error of the point correspondence d and the relative pose (R, t∗)
together with the known intrinsic calibration.

The density over translation directions is given by p(t∗ | D) =
∫

p(R, t∗ | D)dR. En-
gels and Nistér [5] approximate the integral using Laplace’s method. Instead, we use
the even simpler approximation p(t∗ | D) ∝ maxR p(R, t∗ | D), which equals the Laplace
approximation if det(∇2

R log p(R, t∗ | D)) is independent of t∗ [9].
The density p(t∗ | D) is represented discretely over the range of t∗ by a c× c matrix

A. The idea consists of generating relative pose hypotheses by sampling, computing the
according indices (a,b) into A and keeping the maximum for each entry of A. As a
byproduct, an estimate for t∗ can be computed, which we denote by t̂∗ in this section:
t̂∗ ≈ argmaxt∗ p(t∗ | D). The following algorithm contains further details:

1. Initialize A = 0 and γ = 0 (storing the maximum occuring value of p(R, t∗ | D)).

2. Repeat m times:

(a) Draw a sample from D and apply the five point algorithm [13, 3] to estimate
the relative pose (R, t∗).

(b) Normalize t∗ to length 1, choose the sign such that t∗ is in the upper unit-
hemisphere, and map the first two coordinates to discrete matrix indices (a,b).

(c) Set A(a,b) =max(A(a,b), p(R, t∗ | D)).
(d) If γ > p(R, t∗ | D), set γ = p(R, t∗ | D) and t̂∗ = t∗.

3. Normalize A such that
∑

a,b A(a,b) = 1.

We choose a rather low resolution of c = 100 for A and only perform m = 10000 sampling
iterations. Nevertheless, this still gives a reasonable approximation to p(t∗ | D).

As the experiments will show, equation (1) does not work well in case of a large
amount of outliers. As an alternative, we propose the following data likelihood based on
the Blake-Zisserman “distribution”1 [6]:

p(D | R, t∗) ∝

∏
d∈D

(
exp

(
−

s(R, t∗, d)
σ2

)
+ ε

)|D|
−φ

, (2)

1If we make the reasonable assumption that outlier points only occur within the image area, the uniform part
of the distribution can be limited to finite support and we actually get a valid probability density function.



where σ2 is the variance of the Gaussian component (we set σ = 1) and ε defines the
relative weight of the uniform component (we set ε = 0.0002).

We investigate the following uncertainty measures ω( t̂∗) based on p(t∗ | D), which is
approximated by A:

1. The local information measure ωI( t̂∗) = − log p( t̂∗ | D).

2. The global entropy measure ωE( t̂∗) = −
∫

p(t∗ | D) log p(t∗ | D)d t∗.

3. The smoothed information measure, defined as the information of the smoothed
density: ωS( t̂∗) = − log

∫
N(t∗; t̂∗,Σ)p(t∗ | D)d t∗, where N(t∗; t̂∗,Σ) denotes the

normal distribution with mean t̂∗ and covariance matrix Σ (we set Σ =
√

5I). Note
that the integral can be interpreted as a variant of the confidence measure used by
Engels and Nistér [5] (using a Gaussian kernel instead of a confidence area).

3.2 Criterion for the Selection of Relative Poses
Calibrating the pose of a camera j relative to a reference camera i involves a set P =
{(i1, j1), . . . , (il, jl)} of relative poses such that P is a triangle connected path from i to j.
As pointed out before, there are often several alternative sets P. Based on the uncertainty
measures defined above, we assign an uncertainty to each set P and choose the set with
minimum uncertainty. Assuming independence, we have p(P | D) =

∏
k p(t∗ik , jk | D). This

leads to the following expression for all three uncertainty measures: ω(P) =
∑

kω(t∗ik , jk ).
As an example, we present the derivation for the information measure: ωI(P)=− log p(P |
D) = − log

∏
k p(t∗ik , jk | D) =

∑
k− log p(t∗ik , jk | D) =

∑
kωI(t∗ik , jk ).

Choosing a suitable setPwith minimum uncertainty is equivalent to finding a shortest
triangle connected path in the camera dependency graph, where the weight of an edge
(k, l) is defined as the uncertainty ω(t∗k,l). This provides a theoretical justification for the
shortest triangle connected paths approach [15].

Using this approach to calibrate a whole multi camera system involves shortest trian-
gle connected paths from i to all other cameras. Note, however, that the unionU of these
paths also has to be triangle connected. While the common reference camera only guaran-
tees thatU is connected, using a common reference edge instead actually guarantees that
U is triangle connected. Hence, we use shortest paths from a common relative pose to all
cameras. We choose the reference edge e ∈ E with mimimum total uncertainty ω(U). In
other words, we use the shortest triangle connected shortest paths subgraph. This extends
the triangle connected shortest paths approach of Vergés-Llahí, Moldovan and Wada [15].

3.3 Computing Shortest Triangle Connected Paths
In this section, we present an efficient algorithm for our selection criterion. First, we con-
struct the directed extended triangle graph GE as follows (Figure 1, right): Each triangle
becomes a vertex. Additionally, we add an entry vertex for each relative pose and an exit
vertex for each camera. Each entry vertex is connected to each triangle containing the
respective relative pose. The weight of such an edge is the summed uncertainty of all
relative poses in the triangle. Each triangle is also connected to the exit vertex of each
camera it contains. These edges have weight zero. Each pair of triangles, which is con-
nected in GT, is connected in both directions. The weight of each edge is the summed



uncertainty of the two “new” relative poses in the target triangle (i.e. the common relative
pose is ignored).

The graph is defined such that a shortest path from an entry vertex to an exit vertex
corresponds to a shortest triangle connected path in GR with fixed first edge. We can
thus use a standard shortest paths algorithm (e.g. Dijkstra) to compute the shortest paths
from an entry vertex e to all exit vertices (not to all vertices in the graph!), and also the
according shortest paths tree. This tree corresponds to a triangle connected subgraphUe
of the camera dependency graph, which contains triangle connected shortest paths from e
to all cameras. We apply Dijkstra to all entry vertices e and choose the resulting subgraph
Ue with minimum total uncertainty ω(Ue).

Note that Vergés-Llahí, Moldovan and Wada [15] mention the need for an efficient
shortest triangle connected paths algorithm, but do not actually present one. This gap is
filled by our algorithm. Note, however, that we do not actually compute shortest triangle
connected paths starting at a reference camera, but at a reference relative pose. In order to
do the former, simply modify the extended triangle graph such that it has an entry vertex
for each camera instead of each relative pose. Note also that the shortest (ordinary) paths
algorithm in the related paper by Martinec and Pajdla [11] solves a different problem.

4 Experiments
As the multi camera system can only be calibrated up to a 3D similarity transformation,
we compute and apply an optimal transformation between the calibration result and the
ground truth using a linear algorithm followed by nonlinear refinement. As an error mea-
sure for the calibration of a multi camera system in comparison to the ground truth, we
use the mean position error e = 1

n
∑

i ‖Ri ti − RG,i tG,i‖2, where the subscript G indicates
ground truth. The ground truth calibration is normalized such that the distance of the first
two cameras is one. This defines the scale of the error measure e.

4.1 Simulation
The simulation consists of six virtual pinhole cameras (K,RG,i, tG,i) with image size
640× 480 and calibration matrix K = ((1500,0,320), (0,1500,240), (0,0,1))T. The scene
consists of 100 random 3D points uniformly distributed in a cuboid. The cameras are
placed in a circle above the points looking roughly towards the center of the cuboid such
that all cameras can see all points. The height above the scene of every second camera is
slightly increased to avoid planarity. The 3D points are projected into the cameras with
subpixel precision. Noise is simulated by adding random values uniformly distributed in
[−φ/2,φ/2] to all coordinates. We choose φ = 1 for all experiments. Outliers are simu-
lated by replacing a certain fraction of the point correspondences of each camera pair by
points uniformly distributed within the image areas. We perform experiments with the
following amounts of outliers: 0%, 30%, 70%, and 80%. All experiments are repeated
50 times and the resulting mean position errors e are plotted in sorted order. This corre-
sponds to computing all error quantiles. A good algorithm should, of course, have a low
error curve. The curve should also be flat, which is a sign for highly repeatable results.

We perform the following two experiments. In the first one, we increase the portion
of outliers of the camera pairs (1,2), (2,3), (3,4) and (4,5) such that only half of the
inliers remain (e.g. instead of 30%, these camera pairs have 65% outliers). In the second
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Figure 2: Comparison of the BFS traversal with our uncertainty based selection of relative
poses using the smoothed information measure and the Blake-Zisserman distribution. The
percent values denote the portion of outliers. The plot shows sorted mean position error
values e (quantiles). Left: first experiment, right: second experiment.
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Figure 3: Comparison of the three uncertainty measures using the Blake-Zisserman distri-
bution; including the BFS results. The percent values denote the portion of outliers. The
plot shows sorted mean position error values e (quantiles). Left: first experiment, right:
second experiment.
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first experiment, right: second experiment.



Figure 5: Setup of the real experiment. Left: the multi camera system observing the
pattern for the Zhang calibration, right: the scene (image from the sixth camera).
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Figure 6: Experiment on real data. Left: mean position error quantile results for BFS as
well as our selection criterion. Relative pose and uncertainty estimation used the Blake-
Zisserman distribution. Right: a visualization of a calibration result (cyan / light gray)
with a mean position error e ≈ 0.03 compared to a Zhang calibration (blue / dark gray).

experiment, the noise level of these camera pairs is increased from 1 to 5 without changing
the portion of outliers. We will compare our selection criterion to the BFS traversal and
also compare the three uncertainty measures and the two probability density functions
with each other.

First, we compare the BFS traversal to our selection criterion using the Blake-Zisser-
man distribution and the smoothed information measure. Figure 2 clearly shows that
our selection criterion greatly improves the calibration results in both situations. This
shows that in both cases the camera pairs with contaminated data can be identified by the
smoothed information measure and that the selection mechanism is able to avoid them.

Figure 3 contains the comparison of the uncertainty measures in case of 70% out-
liers using the Blake-Zisserman distribution. Independent of the uncertainty measure,
our selection criterion gives better results than BFS traversal. In the first experiment, the
smoothed information measure and the entropy show a very similar performance. The
purely local information measure is inferior. In the second experiment, the smoothed
information measure is clearly better than the other two. The global entropy measure
is obviously not very good at distinguishing situations with different noise levels. The
smoothed information measure gives the best overall results by taking local and global
uncertainty into account.

Finally, we present a comparsion of the two probability density functions in Figure 4.



Up to an outlier level of 30%, the Cauchy distribution works well and gives very similar
results to Blake-Zisserman. However, in case of 70% outliers, the later is much better.

Overall, the simulation experiments clearly show that our relative pose selection cri-
terion greatly improves calibration results in case of some camera pairs with additional
outliers as well as additional noise. The smoothed information measure in combination
with the Blake-Zisserman distribution is the best choice.

4.2 Real Data
The experiment on real data consists of two AVT Marlin monochrome cameras and six
AVT Pike color cameras observing a scene, as depicted is Figure 5. We estimate the
intrinsic camera parameters using Zhang’s [16] calibration pattern based method. To be
able to evaluate our calibration results, we use Zhang’s method also to compute a “ground
truth” for the extrinsic calibration. Note that this “ground truth” is not free of errors, but
still provides a reasonable comparison. As input for our calibration, we extract 100 point
correspondences in each image pair using SIFT [8].

Figure 6 contains the results for the Blake-Zisserman distribution. Our selection cri-
terion using the smoothed information measure or the entropy measure provides greatly
improved calibration results compared to the BFS traversal. This demonstrates that our
method is actually beneficial in practical situations, where the quality of the correspon-
dences between camera pairs cannot be strictly devided into “good” and “bad”. The
Cauchy distribution did not produce reasonable results at all.

5 Conclusions
In the context of calibrating a multi camera system via pairwise relative poses, we pre-
sented theoretically sound local and global uncertainty measures for relative poses: the
purely local information measure, the purely global entropy measure and also the interme-
diate smoothed information measure. We formulated the selection of relative poses as a
graph based discrete optimization problem, for which we presented an efficient algorithm.
In the experiments, we showed that our selection criterion is able to greatly improve cal-
ibration results by avoiding bad relative poses caused by an increased outlier portion or
increased noise. It turned out that the smoothed information measure, which takes local
as well as global uncertainty into consideration, gives the best results. Furthermore, we
showed that the Blake-Zisserman distribution is much better suited than the Cauchy dis-
tribution, especially in case of many outliers. The experiments on real data confirmed
these findings.
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