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Abstract. Self-calibration methods allow estimating the intrinsic camera param-
eters without using a known calibration object. However, such methods are very
sensitive to noise, even in the simple special case of a purely rotating cam-
era. Suitable pan-tilt-units can be used to perform pure camera rotations. In this
case, we can get partial knowledge of the rotations, e.g. by rotating twice about
the same axis. We present extended self-calibration algorithms which use such
knowledge. In systematic simulations, we show that our new algorithms are less
sensitive to noise. Experiments on real data result in a systematic error caused by
non-ideal hardware. However, our algorithms can reduce the systematic error. In
the case of complete rotation knowledge, it can even be greatly reduced.

1 Introduction

For many computer vision tasks, the intrinsic camera parameters have to be known.
Classic calibration uses a calibration pattern with known geometry and easily detectable
features to establish correspondences between known 3D points and 2D image points.
However, having to use such a pattern is not very convenient and sometimes impos-
sible. Luckily, there are self-calibration methods, which estimate the intrinsic camera
parameters from images taken by a moving camera without knowledge about the scene.
For an overview, the reader is referred to the literature [1]. An important special case is
self-calibration from a purely rotating camera as introduced by Hartley [2,1].

However, most self-calibration methods are very sensitive to noise [3,1]. They work
well at low noise levels, but most often have serious problems at higher noise levels. On
the other hand, in many practical situations, additional knowledge is available, which
can be used to increase the robustness of self-calibration. De Agapito, Hayman and Reid
[6] exploit a priori knowledge on the intrinsic parameters by using a MAP estimator.
In this paper, we focus on rotation knowledge. Hartley [2] mentions the possibility to
incorporate known rotation matrices into the nonlinear refinement step and reported
greatly improved self-calibration results. Frahm and Koch [4,5] have presented a linear
approach that uses known relative orientation provided by an external rotation sensor.

In practice, however, there are cases in between no and full rotation knowledge.
For example, a pan-tilt-unit is often used to perform rotations about one of two phys-
ical rotation axes at a time. To the best of our knowledge, using such a priori infor-
mation to improve self-calibration has not been systematically studied. In this paper,
we give an overview of di�erent kinds of partial rotation information with real pan-
tilt-units in mind, and show how this knowledge can be incorporated into a nonlinear
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self-calibration procedure. We demonstrate the improvements gained by our new algo-
rithms in systematic simulations and also in experiments with real hardware.

The paper is organized as follows: In Section 2 we give a repetition of self-calibration
for a rotating camera. Section 3 describes how partial rotation information can be in-
corporated into the self-calibration procedure in various situations. Our new algorithms
are evaluated in Section 4. Finally, we give conclusions in section 5.

2 Self-calibration of a Rotating Camera

2.1 Camera Model

First of all, we introduce the camera model and some notation. The pinhole camera
model [1,7] is expressed by the equation �p � K pC, where pC is a 3D point in the cam-
era coordinate system, p � (px� py� 1)T is the imaged point in homogeneous 2D pixel

coordinates, � � 0 is a projective scale factor and K
def
� (( fx� s� ox)� (0� fy� oy)� (0� 0� 1))T

is the camera calibration matrix, where fx and fy are the e�ective focal lengths, s is
the skew parameter and (ox� oy) is the principal point. The relation between a 3D point
in camera coordinates pC and the same point expressed in world coordinates pW is
pC � Ro pW � t, where Ro is the orientation of the camera and t is the position of its op-
tical center. Thus, pW is mapped to the image point p by the equation �p � K(Ro pW� t).

2.2 Linear Self-calibration

We will give a very brief repetition of Hartley’s linear self-calibration algorithm [2,1]
for a purely rotating camera. In this situation, without loss of generality, we can assume
t � 0. Taking a second image p� � (p�x� p�y� 1)T of the point pW with camera orientation
R�

o then results in �� p� � KR�

o pW, where �� � 0 is another scale factor. The points p
and p� correspond. By eliminating pW, we get (cf. [1]):

���p� � KRK�1 p with R
def
� R�

oRT
o and ���

def
� ���� . (1)

In this formulation, R is the relative camera rotation. The transformation ��� p� � Hp
maps p to p�, where H

def
� KRK�1 is the infinite homography. It is related to the dual

image of the absolute conic ��
def
� KKT by the equation ��

� H��HT . Now, given
n � 2 rotations of the camera (not all about the same axis), the self-calibration problem
can be solved linearly by the following algorithm:

Input: A set of point correspondences � (pi� j� p�i� j) � 1 � i � n� 1 � j � mi �, where
n � 2 is the number of image pairs and mi is the number of point correspondences
for pair i. For numerical reasons [1,8], we normalize pixel coordinates throughout
the paper to the range [�1� 1] by applying a translation and an isotropic scaling.

1. For each image pair i, estimate the inter-image homography H�

i from the point cor-

respondences of image pair i and enforce det(Hi) � 1 by setting Hi � det(H�

i )
�

1
3 H�

i .
2. Solve the set of equations ���

� Hi�
�HT

i � 1 � i � n � for �� (linear least squares).
3. Compute K from �

�
� KKT , e.g. by Cholesky decomposition of (��)�1.

Note that Hartley and Zisserman [1] require the homographies Hi to be expressed with
respect to a common reference image. It is obvious that this requirement is not neces-
sary, as only the relative orientations Ri of pairs of views are required.
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2.3 Nonlinear Refinement

With equation (1) in mind, the self-calibration problem for a rotating camera with con-
stant intrinsic parameters K can be defined as the solution of the following optimization
problem (similar to Hartley’s and Zisserman’s nonlinear refinement [1]):

K � argmin
K

min
(Ri � SO(3))1�i�n

n�

i�1

mi�

j�1

d
�
KRiK�1 pi� j� �

��

i� j p
�

i� j

�2
, (2)

where SO(3) � � R � �3�3 � RRT
� I � det(R) � 1 � denotes the rotation group and

d(	� 	) is the Euclidean distance of 2D points in homogeneous coordinates. There are
two advantages of the nonlinear formulation of the problem. First, the distance d(	� 	)
is a geometrically meaningful measure on the point correspondences. Second, the con-
straint, that K is constant, will be enforced directly, which is impossible for the homog-
raphy estimation part of the linear algorithm. The nonlinear optimization problem in
equation (2) can be solved by finding a good initial approximation to the solution and
refining that using a local nonlinear optimization algorithm. We use a modern second
order Trust Region algorithm [9]. The initial solution for K is provided by the linear
self-calibration method described above. The rotation matrices can be initialized as fol-
lows: compute Ri � K�1Hi K and enforce the constraint Ri � SO(3) by setting all
singular values of Ri to one. The gradient and the Hessian of the objective function
in equation (2) (and all variants that will follow in the rest of the paper) can be gained
symbolically in “closed form”. We will leave out the details, as automatic di�erentiation
methods can be applied.

2.4 Zero Skew

For modern cameras, we can often assume zero skew s � 0 [1]. This assumption can be
easily incorporated into the optimization problem by initially setting s � 0 and remov-
ing s from the set of optimization parameters. In the linear algorithm, the assumption
can also be applied [1].

3 Improved Self-calibration with Partially Known Rotations

Rotation information can be available to several di�erent extents. The various cases of
partially known rotations are summarized in Figure 1. We will subsequently explain
these cases, and show how each kind of a priori knowledge can be incorporated into the
nonlinear self-calibration procedure by presenting appropriate variants of equation (2)
with modified parameterizations of the rotations Ri. Even though the new formula-
tions may look more complicated, decreasing the dimension of the parameter space
will (hopefully) reduce the over-adaptation to noise. Despite that, in the cases with
known values of some parameters, the algorithms simply cannot introduce errors by
misestimating them.
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common rotations (7)

unknown rotations (5) common axes (6)

known rotations (5�)

� known� angles (8)

� known� angles (7)

known axes (6�)

Fig. 1. Cases of partially known rotations. The arrows indicate additional rotation knowledge,
and “� known� angles” means that, additionally, rotation angles are known up to a common scale
factor. Numbers refer to equations, where (5�) and (6�) mean that a variation of the equation with
fewer optimization parameters is used. Further explanations can be found in the text.

3.1 Unknown Rotations

Our starting point for using partial rotation information is the optimization problem
in equation (2). First, we have a closer look at the rotation matrices. Enforcing the
constraint Ri � SO(3) during the optimization can implicitly be achieved by using a
minimal parameterization such as exponential parameters as suggested by Ma, Soatto,
Kosecka and Sastry [10]. A rotation matrix R can be represented by a vector w �

(w1�w2�w3)T using Rodrigues’ formula [10]:

R � Rod(w)
def
� I �

S(w)

w


sin(
w
) �
S(w)2


w
2
(1 � cos(
w
)) , (3)

using the skew symmetric matrix S(w)
def
� ((0��w3�w2)� (w3� 0��w1)� (�w2�w1� 0))T . The

related axis-angle parameterization separates the rotation axis v and angle � explicitly
at the cost of one additional parameter and the constraint 
v
 � 1:

R � Rod(v� �)
def
� I � S(v) sin(�) � S(v)2(1 � cos(�)) � Rod(�v) . (4)

We prefer the axis-angle parameterization over exponential parameters only in cases of
appropriate a priori knowledge, e.g. if v is known. For the following reasons, we do not
use unit quaternions, even though they are very popular:

– They do not provide a minimal parameterization, as they have four parameters, and
the unit quaternion constraint is required (similar to axis-angle).

– The close relationship between exponential parameters and the axis-angle repre-
sentation helps pinpoint the precise di�erences between the various cases of partial
rotation knowledge, as will become evident in the rest of the paper.

– There is no clear agreement as to which parameterization is best [11].

Applying exponential parameters to equation (2), we get the following nonlinear opti-
mization problem, which has a total of 3n � 5 parameters:

K � argmin
K

min
(wi)1�i�n

n�

i�1

mi�

j�1

d
�
KRod(wi)K�1 pi� j� �

��

i� j p
�

i� j

�2
. (5)

For the initialization of the nonlinear optimization problem, we need to compute the
rotation parameters wi from the rotation matrices Ri [10].
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3.2 Rotation About Two Axes Only

If the pan-tilt-unit is actively controlled for the purpose of self-calibration, it is possible
to restrict rotations to be about one of the two physical rotation axes of the pan-tilt-unit
at a time, such that there are only two mathematical rotation axes in total (Figure 1:
“common axes”). In this case, rotations only have one parameter each (the rotation
angle) and there are two degrees of freedom for each rotation axis. From a theoretical
point of view, we can generalize this and allow r � n rotation axes instead of only two.
This results in n � 2r � 5 parameters. To obtain a suitable version of the optimization
problem in equation (5), we replace exponential parameters by axis-angle and use only
r instead of n rotation axes. Finally, we add constant indices ki as a priori knowledge,
which assign the correct rotation axis vki to the rotation with index i, and get:

K � argmin
K

min
(�i)1�i�n� (vk)1�k�r

vk
 � 1 for all k

n�

i�1

mi�

j�1

d
�
KRod(�i� vki)K�1 pi� j� �

��

i� j p
�

i� j

�2
. (6)

Note that this formulation uses one parameter too much for each axis vk. In this one
case we trade minimality for simplicity and ignore the constraints 
vk
 � 1 during the
optimization. To initialize the common rotation axes, we take the average over all inde-
pendent estimates which belong to the same axis. Throughout the paper, an according
strategy is applied whenever two or more rotations have common parameters. If the ro-
tation axes are known (Figure 1: “known axes”), the parameters vk are constant and need
not to be optimized, and we have a minimal parameterization with 5 � n parameters.

3.3 Rotation Angles Known Up to Scale

Things simplify even more if we have knowledge about the rotation angle. Using a
pan-tilt-unit, relative rotation angles are often known in some device specific unit. If
the pan-tilt-unit is calibrated and provides a mapping from machine units to radians,
we get the actual angles. Otherwise, we assume a linear mapping from angles �i in ma-
chine units to radians �i: �i � �ki�i, where �ki is the unknown scale factor, which may
be specific to each of the r rotation axes. This results in a total of 5 � 3r parameters
for r unknown but fixed rotation axes (Figure 1: “common axes � known� angles”). To
formulate an appropriate optimization problem, we begin with equation (5). We encode
each axis and scale factor by one vector uk. For each actual rotation, the appropriate
vector uki is multiplied by the known angle in machine units �i to produce the exponen-
tial parameters (wi in equation (5)). We now minimize over the vectors uk:

K � argmin
K

min
(uk)1�k�r

n�

i�1

mi�

j�1

d
�
KRod(�iuki )K�1 pi� j� �

��

i� j p
�

i� j

�2
. (7)

If the rotation axes are known (Figure 1: “known axes � known� angles”), we start with
the formulation in equation (6). The angles �i are replaced by �ki�i, and the values �k

are the new optimization parameters (5 � r parameters in total):

K � argmin
K

min
(�k)1�k�r

n�

i�1

mi�

j�1

d
�
KRod(�ki�i� vki )K�1 pi� j� �

��

i� j p
�

i� j

�2
. (8)
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3.4 Common Rotations

It may be possible to control the pan-tilt-unit such that all rotations about each physical
axis share the same angle (which we do not need to know). In other words, there are only
two (or more generally: r) unknown rotation matrices (Figure 1: “common rotations”).
Mathematically, this situation is a special case of equation (7) if we set �i � 1 for all i.
Thus, there is again a total of 5 � 3r parameters. This case is also a direct special case
of equation (5) with fewer rotation parameters.

3.5 Known Rotations

Finally, rotations can be known completely (“known rotations”). In practice, such data
can be provided by a dedicated rotation sensor (Figure 1: “known rotations”). Calibrated
pan-tilt-units, as described above, are a further possibility (“known axes � known� an-
gles” plus known scale factors �k). To get an appropriate optimization problem, we ob-
serve that this is a special case of each case presented above. We choose equation (5).
The rotation parameters wi are now constant and need not to be optimized.

This situation with only five parameters has already been briefly mentioned by Hart-
ley [2], who used a similar nonlinear formulation. Frahm and Koch [4,5] investigated
this case in more detail and presented a linear algorithm. Note, however, that these
approaches cannot benefit from only partially known rotations.

3.6 A Note on Real Pan-Tilt-Units

All rotation knowledge in equation (2) and the above mentioned reformulations is ex-
pressed in the camera coordinate system. In the cases “common axes” and “common
rotations”, this seems uncritical at first sight, but really is an issue, as will be explained
in this section. In the cases “known axes” and “known rotations” the problem is quite
obvious: the alignment of the rotation axes with the camera coordinate system needs to
be known. The additionally complicating issue, which is relevant to all cases of partial
rotation knowledge, is that the alignment of the rotation axes with the camera coordinate
system is typically not constant even though the camera is rigidly mounted onto (or into)
the pan-tilt-unit. In most (if not all) pan-tilt-units, one of the rotation axes is placed “on
top” of the other one. This means that the camera coordinate system is rigidly mounted
relative to one of the rotation axes only. In case of the Directed Perception PTU-46-
17.5, the pan mechanism rigidly rotates the tilt axis and the camera. However, the tilt
mechanism only rotates the camera and does not a�ect the pan mechanism. Thus, tilting
changes the alignment of the pan axis relative to the camera coordinate system. We can
avoid this problem by keeping the tilt setting constant for all pan rotations, e.g. by first
performing pan rotations and then tilt rotations.

4 Experiments

In the experiments, we investigate all cases of partially known rotations shown in
Figure 1. We also include the linear standard algorithm. By simulation, we demon-
strate how the influence of noise reduces when using partial rotation knowledge. We
also present results for real hardware.
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4.1 Simulation

For the simulation, we use a virtual pinhole camera with parameters f (GT)
x � f (GT)

y �

100, s(GT)
� 0, o(GT)

x � 150, o(GT)
y � 100. In normalized pixel coordinates, the values

are: f (GT�N)
x � f (GT�N)

y � 2�3, s(GT�N)
� o(GT�N)

x � o(GT�N)
y � 0. These parameters are

of course unknown to the self-calibration algorithms. Point correspondences are gen-
erated by projecting 100 3D points into the camera twice – before and after rotating
the camera about its X or Y axis. Each resulting 2D point is modified by uniformly
distributed, additive noise in the range [���2� ��2] � [���2� ��2]. We systematically
perform experiments for di�erent values of the noise parameter �. If one of the result-
ing 2D points of a corresponding pair lies outside of the image area [0� 300] � [0� 200],
the pair is discarded. The 3D points are randomly generated by a uniform distribution
on the cuboid [�15000� 15000]� [�10000� 10000]� [�10000� 10000] (in pixel units).
As an alternative, more diÆcult situation, we change the values of some parameters as
follows: f (GT)

x � f (GT)
y � 400 (normalized: f (GT)

x � f (GT)
y � 8�3), 2000 3D points.

We perform a series of ten (relative) rotations about the Y axis followed by another
ten rotations about the X axis. The rotation angle is 10Æ for each rotation. The initial
configuration for the first sequence of rotations is Ro � Rod((0��25Æ� 0)T ), and Ro �

Rod((0� 0��25Æ)T ) for the second one. We measure the error of the self-calibration result
K(N) by computing the Frobenius norm of the di�erence between K(N) and the ground
truth data K(GT�N), both expressed in normalized pixel units: eF �

���K(N)� K(GT�N)
���

2
. If the

self-calibration fails, e.g. because �� is not positive definite, we set eF � �. Each expe-
rimental setup is simulated 100 times with identical parameters. For the final evaluation,
we compute the median of eF over all 100 runs.

Results: Figure 2 (left) shows the results of the simulation in the simple situation. You
can clearly see the improvements gained by using partial rotation knowledge. As ex-
pected, a greater amount of rotation knowledge leads to better results. The linear algo-
rithm is outperformed by the nonlinear ones, and additional rotation knowledge further
improves the results. However, there is a clustering in the plots: “common axes”, “com-
mon axes � machine angles” and “common rotations” perform almost equally well.
The same is the case for “known axes” and “known axes � machine angles”. Obvi-
ously, in this experiment, knowing rotation angles up to scale does not further improve
self-calibration. However, there is a pronounced di�erence between “common axes”,
“known axes” and completely “known rotations”. Knowing only “common axes” is al-
ready better than “unknown rotations”, although this is clearly visible only for high
noise levels. Note how these results agree with the hierarchy in Figure 1.

The results for the diÆcult situation are shown in Figure 2 (right). Note that the
scale of the error axis is more than ten times larger in the right plot revealing that
this situation is actually a lot more diÆcult. As far as the ranking of the algorithms
is concerned, the main impression is the same. However, there are a few interesting
di�erences to the simple situation. The most striking one is the large improvement
gained by completely “known rotations”. Beginning with noise level � � 6, there is
now also an improvement gained by knowing angles up to scale in the case of “common
axes”. However, in the case “known axes � known� angles” there is a serious problem.
The reason for this might be some bad local minimum, which cannot be overcome
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Fig. 2. Median of Frobenius error eF for various noise levels �. Left: simple situation ( f (GT)
x �

f (GT)
y � 100). Right: diÆcult situation ( f (GT)

x � f (GT)
y � 400). Note the di�erent scalings of the Y

axes.
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Fig. 3. Median of Frobenius error eF for various noise levels � with the assumption of zero skew.
Left: simple situation ( f (GT)

x � f (GT)
y � 100). Right: diÆcult situation ( f (GT)

x � f (GT)
y � 400). Note

the di�erent scalings of the Y axes.

in the restricted seven dimensional space given a bad initialization for the angle scale
parameters. A further possible explanation would be problems during the optimization
caused by ill-conditioned Hessians, as might occur if the initialization is too bad.

The results for the zero skew variants of the algorithms are shown in Figure 3. The
first important observation is that the error is reduced further. However, the improve-
ment gained by (correctly) assuming zero skew is di�erent for the various algorithms.
As the good algorithms seem to gain less, the di�erence between the results for the
various types of partial rotation knowledge is much smaller, but still visible. The case
of completely “known rotations” distinguishes surprisingly well from the rest.
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Table 1. Median Frobenius errors eF and median relative errors in percent on the normalized focal
length er � 100� f (N)

x � f (GT�N)
x �� f (GT�N)

x for the experiments on real data ( f (GT�N)
x � 2�4098)

base algorithm zero skew variant
t10 t5 o10 o5 t10 t5 o10 o5

algorithm eF er eF er eF er eF er eF er eF er eF er eF er

linear 1.11 35 1.13 35 1.29 38 1.24 38 1.11 35 1.13 34 1.26 37 1.23 38
unknown rotation 1.04 36 1.06 35 1.24 44 1.20 40 1.04 35 1.06 35 1.21 44 1.18 40
common axes 1.00 35 1.04 34 1.13 41 1.13 38 0.99 34 1.04 34 1.13 41 1.12 38
� known� angles 0.99 34 1.01 34 1.13 37 1.15 36 0.98 33 1.00 33 1.13 37 1.14 36
common rotations 0.99 34 1.01 34 1.13 37 1.15 36 0.98 33 1.00 33 1.13 37 1.14 36
known axes 1.17 37 1.15 35 1.34 44 1.22 40 0.97 33 1.03 33 1.05 38 1.08 37
� known� angles 1.12 35 1.13 35 1.30 38 1.24 38 1.11 35 1.13 34 1.26 37 1.23 38
known rotations 0.12 2 0.12 2 0.17 2 0.15 2 0.12 2 0.12 2 0.17 2 0.15 2

4.2 Real Camera

For the experiments with real hardware, we use a Sony DFW-VL500 progressive scan
firewire camera mounted onto a Directed Perception PTU-46-17.5 pan-tilt-unit such
that the tilt axis is parallel to the X axis of the camera coordinate system, and the pan
axis for tilt setting 0 is parallel to the Y axis. Note that this setup violates the pure
rotation assumption, i.e. the translation vector t is not zero. Lacking ideal hardware,
we nonetheless assume rotation about the X and Y axis of the camera coordinate sys-
tem. Note that this problem is not specific to our approach, but common to the vast
majority of the rotational self-calibration literature. We also adopt the further common
simplification of ignoring camera distortions.

The pan-tilt-unit performs two rotation subsequences similar to the setup in the sim-
ulation. We use two di�erent scenes for the experiments: a wall with artificial tex-
ture (t), which is well suited for point tracking, and a typical oÆce environment (o).
For each scene, we record one sequence with 10Æ rotations and another one with 5Æ

rotations. Each of the four sequences (t10, t5, o10, o5) is repeated ten times with
a randomly modified initial pan-tilt configuration. The videos are available online at
������������	
��
���	���
	���
������������	�. To get point corres-
pondences, we track up to 200 points using KLT tracking [12]. All points which could
be tracked from the beginning to the end of each 5Æ or 10Æ subsequence, respectively,
are used as point correspondences.

A ground truth estimation of the camera parameters is performed using Zhang’s [13]
method. As in the simulation, we compute the median (over ten sequences) of the Frobe-
nius error of the self-calibration results in normalized pixel units. The results are listed
in Table 1. For all algorithms, except for “known rotations”, the error is very large.
Actually, the focal lengths fx and fy are severely overestimated throughout the exper-
iments. The reason for this is very probably a violation of model assumptions: pure
rotation about the optical center and a distortion-free camera. Given the good optics
of the test camera, we expect the non-ideal pan-tilt-unit to cause most of the system-
atic error. Note, however, that our algorithms with partial rotation knowledge are able

http://www4.informatik.uni-jena.de/selfcalib
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to reduce the systematic error in most cases. The algorithm with completely “known
rotations” can even greatly reduce it and produce reasonable results.

5 Conclusions

We have presented improvements for rotational self-calibration with partially known
rotations, which are available, e.g., when using a pan-tilt-unit to rotate the camera. The
knowledge is exploited by restricting the rotation parameterization in a nonlinear self-
calibration algorithm. In systematic simulations, we showed that our new algorithms
can reduce the sensitivity to noise. The experiments on real data revealed a system-
atic error, probably caused by non-zero translation. Our algorithms with partial rotation
knowledge were able to reduce this error. In case of full rotation knowledge, the re-
maining error was very small in comparison.

As future research, given the problems with the non-ideal pan-tilt-unit, we plan to
extend our approach to be able to deal with the case of constant non-zero translation.
We also plan to extend our formulation of partial rotation knowledge such that we do
not have to express the rotation axes in the camera coordinate system.
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