
largest drop, the hip was significantly more abducted (see Fig. 3). The described leg placement 516 

permitted the pelvis to be rotated towards the trailing leg (yaw motion) and tilted towards 517 

the leading leg (roll motion) while descending towards the lowered substrate (Fig. 4).  518 

 519 

Leading limb (stride i) 520 

The leading effective leg touched down significantly later when stepping down, if compared 521 

to the same event during level locomotion. The angle of attack (0) was steeper but did not 522 

vary with drop-height. At the same time the retraction of the trailing limb in the late stance 523 

was step-height related. This indicates that leg retraction velocity was decoupled from the 524 

trailing leg after crossing to the ground level, as observed in the aperture angle (see Fig. 2). 525 

This result suggests that the angle of attack and not the aperture angle is a target control 526 

parameter for leg placement when negotiating visible drops. During 1cm drops, the effective 527 

leg lengthening during swing is explained by hip extension, but especially by the significant 528 

extension of the TMP joint before TD. This shaped the subsequent behavior of the leg during 529 

stance. We think, that the more extended TMP joint at TD shifted spring-like behavior from 530 

the INT to the TMP joint (see Fig. 3). Gordon and colleagues showed that the guinea fowl 531 

displayed significantly higher activation of the M. flexor perforatus digiti III before and after 532 

their leg touched down in a sunken substrate 9. We speculate, that by preloading the tendons 533 

spanning the TMP joint during swing, the quail changed the viscoelastic properties of the joint 534 

(i.e., they shifted from a more damped joint behavior dominated by muscle properties to a 535 

more spring-like behavior dominated by elastic tissues, as observed in running humans 43 and 536 

turkeys 44. The goal of this anticipation seems to be two-fold. First, to maintain minimization 537 

of joint work under larger GRF and second, to reduce injury risk in soft tissues. By the way, this 538 

reflects the same strategy in experienced vs. unexperienced dogs in agility 45.  The strategy of 539 
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minimizing the sum of joint work also accounted for segmental bird kinematics in level 540 

locomotion 46. Recalling that joint work is the joint torque (T) times angular excursion, it 541 

follows that if the GRF increase, larger joint movements must be shifted to the joints located 542 

closer to the line of action of the GRF (having less torque). In addition, by shifting the spring-543 

like behavior to the joint with a more convenient mechanical advantage 47, the quail may 544 

prevent soft tissue injuries by decreasing the tension in the tendons. 545 

As was observed for drops of 10% leg length, the quail used a more extended leading leg 546 

(stride i) to negotiate drops of 25% leg length compared to level or 5 cm drops (see Table 2). 547 

However, the source of the leading leg lengthening was different from those depicted for 548 

drops of 10% leg length. The quail extended the INT joint instead of the TMP joint during swing 549 

(see Fig. 3). This simple change effected a dampened leg response after the drop. Focusing on 550 

the joint level, the TMP joint abandoned the spring-like behavior during stance depicted 551 

during 10% drops, and exhibited the dampened pattern described for level locomotion 3. It 552 

seems that the extension of the INT joint during swing permits muscular work to control leg 553 

compression and thus the energy dissipation after a visible drop. EMG data from the guinea 554 

fowl negotiating slow drops showed that the M. gastrocnemius pars lateralis was recruited 555 

earlier than the M. flexores perforate digiti III. This shift in the activation vanished for faster 556 

drops and level locomotion 9. Perhaps the onset in the activation of these muscles is used by 557 

birds to shape the viscoelastic response of the leg.  558 

To negotiate 50% leg length drops, the aperture angle between the effective legs was similar 559 

to 25% leg length drops until the level line.   However, after the leg crossed the level height, it 560 

was extended until TD. This indicates that the trailing limb rotated faster than the leading limb. 561 

Note that the slope of the mean leg angle before TD was quite flat until the level line (Fig. 2). 562 

Consequently, the retraction speed of the leading leg might be only slightly adapted when 563 
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level TD is lost. At TD, the leading effective leg was shorter than in other drop conditions. Distal 564 

joint angles during 50% leg length drops were not significantly different from those exhibited 565 

by 2.5 cm drops. During this rather cautious drop negotiating technique, leg shortening seems 566 

to be performed by a more flexed hip joint at TD. During stance, the INT displayed a more 567 

bouncing-like behavior.  568 

With increased drop height, the whole leg was more vertically oriented in the frontal plane 569 

and less abducted in the lowered substrate compared to unrestricted locomotion. This leg 570 

placement strategy prevented leg collapse and might have permitted the reorientation of the 571 

pelvis and thus the trunk in motion’s direction. 572 

 573 

 574 

Conclusions 575 

To negotiate visible vertical perturbations, the quail reconfigured leg and joint kinematics 576 

related to perturbation type and height via different anticipatory strategies during swing 577 

and/or reactive control after TD. However, dramatic changes were observed only in the 578 

trailing limb for step perturbations of 50% of leg length. Leg and joint adaptations permitted 579 

the quail to regain steady-state locomotion already after one or two steps.  580 

When coping with vertical perturbations, the quail adapted the trailing limb to permit that the 581 

leading leg steps on the elevated substrate in the same way as it does during level locomotion. 582 

This strategy may have reduced the need of reactive (feedback) response to readapt posture 583 

during leading leg’s stance.  584 

The quail kept the function of the distal joints to a large extent unchanged during uneven 585 

locomotion, and most changes were accomplished in proximal joints. Up to middle step 586 

heights, hip extension was mainly used to lengthen the leg, or in combination with a more 587 
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spring-like TMP joint to change to aerial running. However, to negotiate the largest visible step 588 

perturbations, all joints contributed to leg lengthening/ shortening in the trailing leg and both 589 

the trailing and leading legs stepped more vertically and less abducted. This indicates a sudden 590 

change in leg motor-control program. Further analysis is certainly necessary to understand 591 

muscle synergies, and overall neuromechanics underlining changes between dynamical and 592 

more safely gait programs. 593 

 594 

 595 

Methods  596 

Animals 597 

Nine adult common quails [Phasianidae: Coturnix coturnix (Linnaeus 1758)] displaying a body 598 

weight ranging from 270 to 360 g were used for our analysis (see Table 11). The birds were 599 

housed at the Institute of Zoology and Evolutionary Research in Jena with access to food and 600 

water ad libitum. Housing, care, and all experimental procedures were approved by the 601 

Committee for Animal Research of the State of Thuringia (registry number 02-47/10). Animal 602 

keeping and experiments were performed in strictly accordance with the approved guidelines. 603 

Experiments 604 

For information about level locomotion experiments please refer to 3. In the step-up / step-605 

down experiments, the quails moved across a 3 m long walking track at their preferred speeds. 606 

In the middle of the walking track, the birds negotiated visible drop/ step-up perturbations of 607 

1.0 cm, 2.5 cm, and 5 cm. Those perturbations were created by supplementing the first (for 608 

drops) or the last (for step-up) half of the walking track. The track was covered with fine sheet 609 

rubber to reduce slipping. Body and limb kinematics were collected by using a biplanar X-ray 610 
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fluoroscope (Neurostar, Siemens, Erlangen, Germany) at the facility of the Institute of Zoology 611 

and Evolutionary Research, Germany. X-ray sources were set to obtain recordings from the 612 

laterolateral and ventrodorsal projections. In addition, two synchronized standard light high-613 

speed cameras (SpeedCam Visario g2, Weinberger, Erlangen, Germany) were used to cover 614 

both frontal and lateral perspectives of the track. The X-ray machine parameters were 40 kV 615 

and 53 mA, and a sampling frequency of 500 Hz. Raw video data was first undistorted by using 616 

a freely available MATLAB (The MathWorks, Natick, MA, USA) routine (www.xromm.org) 617 

provided by Brown University (Providence, RI, USA). As a base for the Automatic Anatomical 618 

Landmark Localization using Deep Features (see below), manual digitization of the joints and 619 

other landmarks [following 3] was performed using SimiMotion software (SimiMotion 620 

Systems, Unterschleißheim, Germany) on no more than five randomly distributed frames per 621 

trial. 622 

 623 

Automatic Anatomical Landmark Localization in Multi-view Sequences using Deep Features 624 

In the following, the automatic multi-view landmark localization technique of the locomotion 625 

sequence is described, which is originally published in 48. Our method utilizes multi-view deep 626 

concatenated feature representations of annotated input images to train individual linear 627 

regressors for each view-based correspondent landmark pair. Based on a small number of 628 

annotated correspondent images of a multi-view sequence, the individual trained regressors 629 

locate all landmarks of the entire sequence in each view. In figure 6 the whole method pipeline 630 

is visualized. Afterwards, the automatic localized 2D landmarks of the dorsoventral and lateral 631 

view are utilized to reconstruct 3D landmark coordinates. 632 
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 633 

Figure 6: To train an individual multi-view landmark regressor ℎ𝑛, initially, the deep features 𝑥𝑖 =634 

((𝑥1
𝑑 , … , 𝑥𝑀

𝑑 ,  𝑥1
𝑙 , … , 𝑥𝑀

𝑙 ) are extracted of 𝑀 annotated image pairs. Afterwards, the concatenated 635 
features of correspondent image pairs serve as input for the regressor training. The landmark 636 
positions 𝑦𝑛

∗ of unseen image pairs of 𝑆 are predicted from the resulting trained model ℎ𝑛. This 637 
procedure is repeated for each of the N landmark pairs individually. 638 

 639 

The utilized deep features are learned representations of images extracted from a 640 

Convolutional Neural Network (CNN) 49, which are mainly used for supervised computer 641 

vision tasks, like image classification, object recognition, or object tracking. The CNN learn in 642 

each of its convolutional layer several sets of individual convolutional filters based on the 643 

input images in the training process and provides thereby powerful feature representations 644 

of the utilized image domain. 645 

The training of CNN models usually needs a lot of data, which is not available in our 646 

application. Hence, we choose a model of the AlexNet architecture  50 pre-trained on a 647 

similar task exploiting the same data domain of our application. This pre-trained model is 648 

trained for pose classification with the very same data of multi-view bipedal locomotion 649 

sequences to distinguish 10 quantized poses in each view during running on a trap. The 650 

semi-automatic annotation of the poses is described in 48. After training the CNN on the 651 

auxiliary task of pose classification, the CNN’s layer activations during inference can be 652 

exploited as deep features. In the following we describe the regressor training process for a 653 

single two-view locomotion sequence S utilizing the deep features. 654 
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The multi-view locomotion sequence 𝑆 contains 𝐿 correspondent image pairs from the 656 

dorsoventral and lateral view (𝐼1
𝑑, … , 𝐼𝐿

𝑑) and (𝐼1
𝑙 , … , 𝐼𝐿

𝑙). From each image pair 𝐼𝑖
𝑑 and 𝐼𝑖

𝑙 the 657 

deep features 𝑥𝑖 = (𝑥𝑖
𝑙 , 𝑥𝑖

𝑑) are extracted and concatenated from the fifth convolutional 658 

layer Conv-5 of the pre-trained CNN. Additionally, in 𝑀 = 10 equidistant sampled frame 659 

pairs of both views, the correspondent 𝑁 = 22 landmark position pairs 𝑦 = (𝑦1, … , 𝑦𝑁) 660 

with 𝑦𝑛 = ((𝑙𝑛,1
𝑑 , 𝑙𝑛,1

𝑙 ),… , (𝑙𝑛,𝑀
𝑑 , 𝑙𝑛,𝑀

𝑙 )) are annotated, which are used for single regressor 661 

training.  662 

By utilizing each annotated corresponding landmark pairs 𝑦𝑛, individual linear regressors ℎ𝑛 663 

are trained, which locates the correspondent landmarks in the remaining 𝐿 − 𝑀 images of 664 

both views, automatically. 665 

As linear model ℎ𝑛, we train 𝑁 single 𝜖-SV regressors 51. Each linear regression model ℎ𝑛 666 

uses the given training data (𝑥1, 𝑦1),… , (𝑥𝑀, 𝑦𝑁)  ⊂ 𝑋 × ℝ, where 𝑥𝑖 denotes the deep 667 

features with 𝑋 × ℝ𝐷 and 𝑦𝑖 the landmark positions of the 𝑖𝑡ℎ landmark in the 𝑀 frames. 668 

Hence, for each landmark position pair of both views, a single regressor ℎ𝑖  is trained. 669 

The goal of this regression task is to find a hyperplane 𝑓(𝑥) = 〈𝜔, 𝑥〉 + 𝑏 with a maximum 670 

deviation of 𝜖 from the target values 𝑦𝑖 for all training data. Given the fact that the vector 𝜔 671 

is perpendicular to the hyperplane 𝑓(𝑥), we only need to minimize the norm of 𝜔, 672 

i.e.,‖𝜔‖2 = 〈𝜔,𝜔〉. When working with real data, in most cases, it is impossible to find a 673 

decent solution for this convex optimization problem based on potential outliers. With the 674 

addition of slack variables 𝜉𝑖  𝑎𝑛𝑑 𝜉𝑖
∗ such infeasible conditions can be handled. We 675 

formulate the problem like 51: 676 

 677 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 12, 2022. ; https://doi.org/10.1101/2022.01.11.475813doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.11.475813
http://creativecommons.org/licenses/by-nc-nd/4.0/


argmin
𝜔,𝑏,𝜉𝑖,𝜉𝑖

∗

1

2
‖𝜔‖

2

+ 𝐶 ∑(𝜉𝑖 + 𝜉𝑖
∗)

𝐿

𝑖=1

 678 

𝑠. 𝑡. {

𝑦𝑖 − 〈𝜔, 𝑥𝑖〉 − 𝑏 ≤ 𝜖 + 𝜉𝑖

〈𝜔, 𝑥𝑖〉 + 𝑏 − 𝑦𝑖  ≤ 𝜖 + 𝜉𝑖
∗

𝜉𝑖 , 𝜉𝑖
∗  ≥ 0

       , 679 

 680 

where 𝐶 > 0 is a constant, which weights the tolerance of deviation greater than 𝜖. 681 

 682 

C. Multi-view 3D Reconstruction 683 

The dorsoventral and lateral 2-dimensional position data can be exploited to reconstruct 684 

these corresponded landmark points to 3-dimensional points in a metric space. To realize 685 

that a 3-dimensional calibration pattern in the form of a semi-transparent cube containing 686 

metal spheres is utilized, where each of the spheres have a distance of 1cm. By annotating at 687 

least seven individual corresponding spheres in both views, a relationship between the 688 

annotated 2D pixel position ((𝑢𝑖
𝑑  , 𝑣𝑖

𝑑), (𝑢𝑖
𝑙 , 𝑣𝑖

𝑙)) to the 3D real word positions (𝑋𝑖, 𝑌𝑖, 𝑍𝑖) of 689 

the spheres can be exploited. For more details on how 𝑃 is estimated, we refer to 52. 690 

Angle Calculation 691 

Joint angles were computed as explained in 3, while model related leg kinematics following 692 

18,53. 693 

Three-dimensional kinematics (see Fig. 1 D): the pelvic local coordinate system was located in 694 

the centroid of the triangle composed by both hip joints and the pelvis cranial marker (𝑝𝑐). It 695 

measures the absolute motion of the pelvis related to the global coordinate system. It was 696 

defined by specifying first 𝑒⃗ 𝑥−𝑖𝑛𝑡𝑝𝑒𝑙   as an interim vector pointing from the right hip joint (ℎ𝑟) 697 
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to the pelvis cranial marker 𝑒⃗ 𝑥−𝑖𝑛𝑡𝑝𝑒𝑙 = 𝑝𝑐 − ℎ𝑟, then 𝑒⃗ 𝑦𝑝𝑒𝑙
  to be a vector pointing from ℎ𝑟to 698 

the left hip joint (ℎ𝑙),  𝑒⃗ 𝑦𝑝𝑒𝑙
= ℎ𝑙 − ℎ𝑟, and 𝑒⃗ 𝑧𝑝𝑒𝑙

 and 𝑒⃗ 𝑥𝑝𝑒𝑙
via cross-products as 𝑒⃗ 𝑧𝑝𝑒𝑙

=699 

 𝑒⃗ 𝑥−𝑖𝑛𝑡𝑝𝑒𝑙 × 𝑒⃗ 𝑦𝑝𝑒𝑙
 and 𝑒⃗ 𝑥𝑝𝑒𝑙

= 𝑒⃗ 𝑦𝑝𝑒𝑙
× 𝑒⃗ 𝑧𝑝𝑒𝑙

. The whole-leg coordinate system measures the 700 

rotation of the whole leg related to the pelvis (estimates the three-dimensional rotations 701 

occurring at the hip joint). It was constructed as follows: 𝑒⃗ 𝑧𝑙𝑒𝑔_𝑖
 extends from the knee joint (𝑘𝑖) 702 

to the hip joint ℎ𝑖  (right leg, i = r, left leg, i=l), e.g.  𝑒⃗ 𝑧𝑙𝑒𝑔_𝑖
= ℎ𝑖 − 𝑘𝑖. Then 𝑒⃗ 𝑥−𝑖𝑛𝑡𝑙𝑒𝑔_𝑖

 is an interim 703 

vector directed from TMP-distal markers (𝑡𝑚𝑝𝑑𝑖𝑠𝑡_𝑖) to 𝑘𝑖, e.g., 𝑒⃗ 𝑥−𝑖𝑛𝑡𝑙𝑒𝑔_𝑖
= 𝑘𝑖 − 𝑡𝑚𝑝𝑑𝑖𝑠𝑡_𝑖. 704 

𝑒⃗ 𝑦𝑙𝑒𝑔_𝑖
 was then obtained as  𝑒⃗ 𝑦𝑙𝑒𝑔_𝑖

= 𝑒⃗ 𝑧𝑙𝑒𝑔_𝑖
× 𝑒⃗ 𝑥−𝑖𝑛𝑡𝑙𝑒𝑔_𝑖

 , 𝑒⃗ 𝑦𝑙𝑒𝑔_𝑖
 is hence perpendicular to the 705 

plane defined by the hip joint, the knee joint and the TMP-distal marker and points to the left 706 

(towards medial for the right leg and lateral for the left leg). Finally, 𝑒⃗ 𝑥𝑙𝑒𝑔_𝑖
= 𝑒⃗ 𝑦𝑙𝑒𝑔_𝑖

× 𝑒⃗ 𝑧𝑙𝑒𝑔_𝑖
 . 707 

The whole-leg coordinate system was located in the middle of the femur (segment between 708 

hip and knee). To compute three-dimensional angles, we used the Cardan rotation sequence 709 

z-x-y.  The left leg was used as reference. Thus, positive rotations around the x, y, and z axes 710 

represent, respectively, the inner rotation of the femur (whole leg rotates laterally), femoral 711 

retraction (hip extension), and femoral abduction. To build the mean using both legs, rotations 712 

around the z and the x axes for the right leg were multiplied by -1.  713 

Kinematics were computed using a custom written script in Matlab 2017 (The MathWorks Inc., 714 

Natick, MA, USA).  715 

 716 

Statistical analysis 717 

Goal of our statistical analysis was to find kinematical differences effected by the different 718 

treatments. Following kinematic variables were defined as dependent variables: Global 719 

Parameters such as α0, φ0 and leg length, all joint angles and cardan angles for the pelvis and 720 
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hip joint (relative angles between pelvis and leg). For the trailing limb, we analyzed the early 721 

stance (15%, because at TD in most of cases data was absent) and TO events. For the leading 722 

limb we analyzed the TD and the late stance (75%). In our analysis we included also the four 723 

precedents and the four following points relative to the selected event (event ± 4% of the 724 

stride).  725 

Step locomotion are paired measures (same individuals) while step vs. level locomotion 726 

(grounded running) unpaired [level locomotion was collected in a different study, (Andrada et 727 

al., 2013b)]. For step locomotion repeated measures ANOVA was used to assess the influence 728 

of step-height and direction (up vs. drop) to the dependent variables. Post-Hoc tests with 729 

Bonferoni correction were afterwards performed to assess the influence of each treatment. 730 

Based on the homogeneity of the variances (Levene-test) we selected between TukeyHSD or 731 

Games-Howell tests. To test for significant differences between each step condition and level 732 

locomotion, we performed single multivariate ANOVAs (e.g., 2.5 cm step upwards vs. level).  733 

Statistical analysis was implemented in R (Version: 3.5.3). We used the following libraries 734 

(R.matlab, data.table, stats, rstatix und car). To generate R-code we used the program 735 

„master” (free downloadable under https://starkrats.de). 736 
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Table 1 spatiotemporal parameters 

  Step up Step down Level 

1 cm 2.5 cm 5 cm 1 cm 2.5 cm 5 cm 
speed [m s-1]  0.65 ±0.12 0.55 ±0.2 0.51 ±0.16 0.94 ±0.27 0.51 ±0.24 0.44 ±0.17 0.6±0.11 

Contact  
time [s] 

trailing 0.23 ±0.03 0.30 ±0.12 0.25 ±0.06 0.18 ±0.04 0.25 ±0.18 0.34 ±0.09 0.22 ± 
0.05 leading 0.22 ±0.03 0.33 ±0.19 0.29 ±0.06 0.15 ±0.04 0.21 ±0.06 0.21 ±0.06 

Swing time 
[s] 

trailing 0.17 ±0.1 0.23 ±0.12 0.20 ±0.03 0.14 ±0.01 0.19 ±0.03 0.14 ±0.03 0.14± 0.04 

leading 0.17 ±0.1 0.22 ±0.1 0.17 ±0.04 0.17 ±0.01 0.20 ±0.02 0.20 ±0.05 
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Table 2. Mean, median, max, min values and multiple comparisons for the effective leg during level 

and step locomotion. For the trailing limb, analyses were performed at early stance (15% of the 

stride ± 4%). For the leading limb, around TD (TD ± 4%). 
  

leg step up step down level 
  

1 cm 2.5 cm 5 cm 1 cm 2.5 cm 5 cm 

leg 
length 

[m] 

n tr 
51 62 82 11 89 58 249 

le 
90 138 144 18 108 81 132 

mean 
+/- sd 

tr 0.123 +/- 
0.007 

0.128 +/- 
0.004 

0.132 +/- 
0.01 

0.115 +/- 
0.016 

0.132 +/- 
0.005 

0.119 +/- 
0.006 

0.11 +/- 
0.008 

le 0.145 +/- 
0.007 

0.144 +/- 
0.008 

0.142 +/- 
0.009 

0.146 +/- 
0.004 

0.148 +/- 
0.007 

0.137 +/- 
0.007 

0.128 +/- 
0.007 

median tr 
0.124 0.127 0.135 0.12 0.132 0.119 0.109 

le 
0.145 0.146 0.144 0.146 0.147 0.137 0.128 

max tr 
0.136 0.138 0.145 0.13 0.143 0.135 0.137 

le 
0.156 0.156 0.156 0.157 0.17 0.151 0.147 

min tr 
0.105 0.118 0.105 0.083 0.116 0.11 0.091 

le 
0.129 0.123 0.112 0.139 0.135 0.12 0.111 

comp tr 1 vs lev 
(****)  

2.5 vs lev 
(****) 
2.5 vs 1(*)  

5 vs lev 
(****) 
5 vs 2.5 (*) 
5 vs 1 (****) 

1 vs lev (n.s.)  2.5 vs lev 
(****) 
2.5 vs 1 
(****)  

5 vs lev 
(****) 
5 vs 2.5 
(****) 
5 vs 1 (n.s.) 

 

 le 1 vs lev 
(****) 

 

2.5 vs lev 
(****) 
2.5 vs 1 
(n.s.) 

 

5 vs lev 
(****) 
5 vs 2.5 
(n.s.) 
5 vs 1 (n.s.) 

1 vs lev 
(****) 

 

2.5 vs lev 
(****) 
2.5 vs 1 
(n.s.) 

 

5 vs lev 
(****) 
5 vs 2.5 
(****) 
5 vs 1 (****) 

 

Leg 
angle at 

TD () 
[°] 

n tr 
51 53 82 24 107 58 249 

le 
90 129 144 18 126 81 132 

mean 
+/- sd 

tr 53.5 +/- 
3.1 56.9 +/- 4 

63.1 +/- 
4.2 

52.1 +/- 
8.5 53 +/- 3.2 52 +/- 6.2 

54.3 +/- 
3.9 

le 37.8 +/- 
4.8 39 +/- 4.5 

35.7 +/- 
5.2 50.4 +/- 7 

54.5 +/- 
5.5 53 +/- 3.9 

42.4 +/- 
3.9 

median tr 
53.8 57.3 62.7 55.3 52.6 50.4 54.4 

le 
38 39.3 35.9 49.7 54.9 52.6 42.7 

max tr 
59.5 63.7 72.4 62.5 66.7 64.7 63.4 

le 
47.6 48.6 47.8 65 64.8 61.8 49.1 

min tr 
48 48.1 54.5 37.1 47.1 41.2 44.3 

le 
27.9 27.6 23 39.1 40.9 42.7 31.1 

comp tr 1 vs lev (n.s.) 

 
2.5 vs lev 
(***) 
2.5 vs 1(*) 

 

5 vs lev 
(****) 
5 vs 2.5 
(****) 
5 vs 1 (****) 

1 vs lev (n.s.) 

 
2.5 vs lev 
(**) 
2.5 vs 1 
(n.s.) 

 

5 vs lev (*) 
5 vs 2.5 
(n.s.) 
5 vs 1 (n.s.) 

 

 le 1 vs lev 
(****) 

 

2.5 vs lev 
(****) 
2.5 vs 1 
(n.s.) 

 

5 vs lev 
(****) 
5 vs 2.5 
(****) 
5 vs 1 (*) 

1 vs lev 
(***) 

 

2.5 vs lev 
(****) 
2.5 vs 1 
(n.s.) 

 

5 vs lev 
(****) 
5 vs 2.5 
(n.s.) 
5 vs 1 (n.s.) 

 

Aperture 
angle at 

TD () 
[°] 

n   
45 75 80 5 60 30 66 

mean 
+/- sd 

  49.4 +/- 
12.8 

52.1 +/- 
8.7 

56.2 +/-
10.4 

66.4 +/- 
1.9 

35.4 +/-
14.9 

43.7 +/-
16.6 

53.2 +/- 
7.3 

median   
49.7 51.7 56.3 66 37.7 36.5 54.4 

max   
69.2 64.8 74.9 69.3 62.9 80.7 64.7 

min   
24.1 36.6 21.6 64.5 8.2 29.5 40.6 

comp 
 

1 vs lev (n.s) 

 
2.5 vs lev 
(n.s.) 
2.5 vs 1 
(n.s.) 

5 vs lev (n.s.) 
5 vs 2.5 
(n.s.) 
5 vs 1 (n.s.) 

 2.5 vs lev 
(****) 

 

5 vs lev (**) 
5 vs 2.5 (*) 

 

 

n is the number of points used for multiple comparisons. Significance codes: ‘****’ (p < 0.0001); ‘***’ (p < 0.001); ‘**’ (p < 

0.01); ‘*’ (p < 0.05); n.s. (non-significant). tr: trailing limb, le: leading limb. TD: touch-down.  
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Table 3. Mean, median, max, min values and multiple comparisons for the effective leg during level 

and step locomotion. For the trailing limb, analyses were performed around TO (TO ± 4%). For the 

leading limb, at late stance (85% of the stride ± 4%). 
  

leg step up step down level 
  

1 cm 2.5 cm 5 cm 1 cm 2.5 cm 5 cm 

leg 
length 

[m] 

n tr 
81 138 144 29 117 80 198 

le 
83 130 118 5 108 54 252 

mean 
+/- sd 

tr 0.103 +/- 
0.005 

0.108 +/- 
0.01 

0.139 +/-
0.012 

0.104 +/- 
0.013 

0.107 +/- 
0.005 

0.08 +/-
0.008 

0.094 +/- 
0.005 

le 0.096 +/- 
0.01 

0.102 +/- 
0.006 

0.108 +/-
0.007 

0.122 +/- 
0.001 

0.11 +/-
0.007 

0.097 +/-
0.004 

0.091 +/- 
0.005 

median tr 
0.103 0.107 0.141 0.108 0.107 0.077 0.093 

le 
0.1 0.104 0.109 0.122 0.111 0.095 0.091 

max tr 
0.111 0.126 0.155 0.123 0.117 0.096 0.107 

le 
0.111 0.112 0.116 0.123 0.121 0.105 0.11 

min tr 
0.091 0.078 0.104 0.086 0.097 0.065 0.081 

le 
0.078 0.086 0.092 0.121 0.096 0.092 0.081 

comp tr 1 vs lev 
(****)  

2.5 vs lev 
(****) 
2.5 vs 1(**)  

5 vs lev (****) 
5 vs 2.5 (****) 
5 vs 1 (****) 

1 vs lev 
(***)  

2.5 vs lev 
(****) 
2.5 vs 1 
(n.s.)  

5 vs lev (****) 
5 vs 2.5 (****) 
5 vs 1 (****) 

 

 le 1 vs lev 
(****) 

 

2.5 vs lev 
(****) 
2.5 vs 1 
(***) 

 

5 vs lev (****) 
5 vs 2.5 (****) 
5 vs 1 (****) 

1 vs lev 
(****) 

 

2.5 vs lev 
(****) 
2.5 vs 1 (**) 

 

5 vs lev (****) 
5 vs 2.5 (****) 
5 vs 1 (****) 

 

Leg 
angle 

() [°] 

n tr 81 129 144 36 133 80 198 

le 83 121 118 18 126 54 252 

mean 
+/- sd 

tr 89.1 +/- 
10.5 

96.3 +/-
11.8 

100.5 +/-
5.7 

103.6 +/-
19.5 

82.4 +/-
14.6 

106.2 +/-
15.7 

108.2 +/- 
10.7 

le 85.7 +/-
5.8 

86.1 +/-
8.3 

84.6 +/-4.4 94 +/- 
5.3 

79.2 +/-
9.4 

81.4 +/-5.4 88.7 +/- 
8.5 

median tr 89.7 98.4 100.2 106.1 79.8 107 110.9 

le 86.4 86.8 84.6 95.8 79.2 81.2 90.1 

max tr 105.7 120.3 118.7 130.5 113.2 137.4 121.5 

le 97 106.3 95.2 99.6 96.2 92.3 103.1 

min tr 71.4 64.9 89.6 68 52.6 62 69.7 

le 73.4 71.6 75.5 82.8 64.7 71.3 59.7 

comp tr 1 vs lev 
(****)  

2.5 vs lev 
(****) 
2.5 vs 1(**)  

5 vs lev (****) 
5 vs 2.5 (n.s.) 
5 vs 1 (****) 

1 vs lev (n.s.)  2.5 vs lev 
(****) 
2.5 vs 1 
(****)  

5 vs lev (n.s.) 
5 vs 2.5 (****) 
5 vs 1 (n.s.) 

 

 le 1 vs lev (**) 

 
2.5 vs lev (*) 
2.5 vs 1 
(n.s.) 

 

5 vs lev (****) 
5 vs 2.5 (n.s.) 
5 vs 1 (n.s.) 

1 vs lev (*) 

 
2.5 vs lev 
(****) 
2.5 vs 1 
(****) 

 

5 vs lev (****) 
5 vs 2.5 (n.s.) 
5 vs 1 (****) 

 

n is the number of points used for multiple comparisons. Significance codes: ‘****’ (p < 0.0001); ‘***’ (p < 0.001); ‘**’ (p < 

0.01); ‘*’ (p < 0.05); n.s. (non-significant). tr: trailing limb, le: leading limb. TO: toe-off. 
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Table 4 Mean, median, max, min values and multiple comparisons between joint angles during level 

and step locomotion. For the trailing limb, analyses were performed at early stance (15% of the 

stance ± 4%). For the leading limb, around TD (TD ± 4%).  
  

leg step up step down level 
  

1 cm 2.5 cm 5 cm 1 cm 2.5 cm 5 cm 

knee 
angle [°] 

n tr 
42 44 82 38 107 58 259 

le 
81 135 144 36 135 81 184 

mean 
+/- sd 

tr 85.2 +/- 
8.8 

90.9 +/- 
6.3 

113.1 +/- 
10.1 93.1 +/- 8 

103.7 +/- 
8.2 

90.2 +/-
7.3 

98.3 +/- 
9.3 

le 106.5 +/- 
7.1 

112.5 +/- 
9.9 

109.7 +/- 
9.8 

115.4 +/- 
12 

127.8 +/- 
7.7 

131.5 +/- 
7.4 

120.4 +/- 
7.4 

median tr 
88 91.2 112.8 91.4 104.4 89.9 97.2 

le 
106.8 115.7 111.6 111.1 129.1 133.4 120.8 

max tr 
97.9 107.4 140.8 107.5 122.1 102.7 119.1 

le 
120.7 130.3 124 141.2 145.4 143.9 135.2 

min tr 
65.1 76.2 90.5 79.8 75.3 77 80 

le 
91.4 90.8 77.5 97 108.3 111.4 97 

comp tr 1 vs lev 
(****)  

2.5 vs lev 
(****) 
2.5 vs 1 (n.s.)  

5 vs lev (****) 
5 vs 2.5 (****) 
5 vs 1 (****) 

1 vs lev (**) 

 
2.5 vs lev: 
(****) 
2.5 vs 1 
(****)  

5 vs lev 
(****) 
5 vs 2.5 
(****) 
5 vs 1 (n.s.) 

 

 le 1 vs lev 
(****) 

 

2.5 vs lev 
(*****) 
2.5 vs 1 (***) 

 

5 vs lev (****) 
5 vs 2.5 (n.s.) 
5 vs 1 (n.s.) 

 

1 vs lev (n.s.) 

 
2.5 vs lev 
(****) 
2.5 vs 1 
(****) 

5 vs lev 
(****) 
5 vs 2.5 (*) 
5 vs 1 (****) 

 

INT 
angle [°] 

n tr 
42 44 81 38 107 58 259 

le 
81 135 144 36 135 81 161 

mean 
+/- sd 

tr 99 +/- 
10.5 

114.1 +/-
14.5 

139.3 +/- 
9.4 

110.5  +/- 
6.9 

126.2 +/-
12.7 

94.8 +/-
9.3 

112 +/- 
8.6 

le 111.7 +/-  
10 

114 +/-  
10.8 

121.2 +/-  
16.7 

126.2 +/-  
13.9 

146.4 +/-  
12.5 

148.5 +/-  
11.2 

125.2 +/- 
13.5 

median tr 
102.2 111.6 139.7 112.7 128.9 93.8 110.4 

le 
109.2 115.3 124.1 123 145.7 150.7 124.8 

max tr 
111.6 138.2 156.1 121.2 145.5 117.4 135.7 

le 
138.8 132.6 145.4 152.7 171.3 164.6 154.6 

min tr 
79.1 87.4 123.8 100.7 94.6 82.4 95.8 

le 
93.2 83.3 59.1 101.8 120.7 120.1 95.8 

comp tr 1 vs lev 
(****)  

2.5 vs lev 
(n.s.) 
2.5 vs 1 (***)  

5 vs lev (****) 
5 vs 2.5 (****) 
5 vs 1 (****)  

1 vs lev (n.s)  2.5 vs lev 
(****) 
2.5 vs 1 
(****)  

5 vs lev 
(****) 
5 vs 2.5 
(****) 
5 vs 1 (***) 

 

 le 1 vs lev 
(****) 

 

2.5 vs lev 
(****) 
2.5 vs 1 (n.s.) 

 

5 vs lev (*) 
5 vs 2.5 (**) 
5 vs 1 (***) 

 

1 vs lev (n.s.) 

 
2.5 vs lev 
(****) 
2.5 vs 1 
(****) 

5 vs lev 
(****) 
5 vs 2.5 (n.s.) 
5 vs 1 (****) 

 

TMT 
angle [°] 

n tr 
42 44 81 38 107 58 249 

le 
81 129 144 27 126 81 135 

mean 
+/- sd 

tr 139.6 +/- 
5.6 

134.8 +/-
16.5 

115.5 +/- 
14.8 

129.2 +/- 
32 

130.2 +/-
11.7 

147.5 +/-
13.8 

142.6 +/- 
7.4 

le 159.1 +/-  
20.2 

167.2 +/-  
7.2 

161 +/-  
10.1 

151 +/-  
21.3 

132.9 +/-  
14.2 

133.8 +/-  
7 

158.1 +/- 
9.5 

median tr 
138.3 135.5 118.5 134.5 125.9 148.8 142.5 

le 
165.2 168.2 162.9 158.7 133.2 133.7 158.5 

max tr 
152.2 162.7 134.3 162.3 158.9 165.2 156 

le 
178 179.2 178.6 176.4 164 155.7 177.1 

min tr 
128.8 106.2 73.8 13.7 114.4 109.2 124.1 

le 
99.1 149.7 131.9 117.5 106.4 119.1 136.1 

comp tr 1 vs lev (n.s.)  2.5 vs lev 
(****) 

5 vs lev (****) 
5 vs 2.5 (****) 

1 vs lev (**)  2.5 vs lev 
(****) 

5 vs lev (*) 
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2.5 vs 1 (n.s.)  5 vs 1 (****)  2.5 vs 1 
(n.s.) 

5 vs 2.5 
(****) 
5 vs 1 (****) 

 le 1 vs lev (n.s.) 

 
2.5 vs lev 
(****) 
2.5 vs 1 (**) 

 

5 vs lev (*) 
5 vs 2.5 (*) 
5 vs 1 (n.s.) 

 

1 vs lev (n.s.) 

 
2.5 vs lev 
(****) 
2.5 vs 1 
(****) 

5 vs lev 
(****) 
5 vs 2.5 (n.s.) 
5 vs 1 (****) 

 

n is the number of points used for multiple comparisons. Significance codes: ‘****’ (p < 0.0001); ‘***’ (p < 0.001); ‘**’ (p < 

0.01); ‘*’ (p < 0.05); n.s. (non-significant). tr: trailing limb, le: leading limb. TD: touch-down. 
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Table 5 Mean, median, max, min values and multiple comparisons between joint angles during level 

and step locomotion. For the leading limb, analyses were performed at late stance (85% of the 

stance ± 4%). For the trailing limb, around TO (TO ± 4%). 
  

leg step up step down level 
  

1 cm 2.5 cm 5 cm 1 cm 2.5 cm 5 cm 
 

knee 
angle [°] 

n tr 
81 130 144 44 135 81 201 

le 
41 69 116 16 113 54 263 

mean +/- 
sd 

tr 64.2 +/- 
12.6 

73.3 +/-
13 

103.4 +/-
19.7 

68.1 +/-
16.4 

63.3 +/-
10.4 

47.9 +/-
8.2 

60.3 +/- 
9.8 

le 53.7 +/- 
8.4 

73.6 +/- 
11 82 +/- 7.8 

69.8 +/- 
8.7 

80.6 +/- 
7.6 

78.6 +/- 
5.4 

73.8 +/- 
7.1 

median tr 
62.6 70.4 106.9 63.4 62.8 47.1 58.3 

le 
53.7 76 84.7 65.9 79.4 78.9 72.8 

max tr 
88.2 125.4 137.7 101.6 91.2 72.8 83.1 

le 
69 89.3 94.2 91.1 99.8 88.5 95.5 

min tr 
39.4 53.5 55.7 47.8 46 36.1 42.2 

le 
40.6 39.3 63.5 61.7 66.4 70.3 56.3 

comp tr 1 vs lev (*)  2.5 vs lev 
(****) 
2.5 vs 1(***)  

5 vs lev 
(****) 
5 vs 2.5 
(****) 
5 vs 1 (****) 

1 vs lev (**)  2.5 vs lev (*) 
2.5 vs 1 
(****)  

5 vs lev 
(****) 
5 vs 2.5 
(****) 
5 vs 1 (****) 

 

le 1 vs lev 
(****)  

2.5 vs lev 
(n.s) 
2.5 vs 1 
(****)  

5 vs lev 
(****) 
5 vs 2.5 
(***) 
5 vs 1 (****) 

1 vs lev (n.s)  2.5 vs lev 
(****) 
2.5 vs 1 
(n.s.)  

5 vs lev 
(****) 
5 vs 2.5 
(n.s.) 
5 vs 1 (n.s.) 

 

INT 
angle [°] 

n tr 
72 130 135 40 135 81 202 

le 
35 69 116 16 113 54 263 

mean +/- 
sd 

tr 80.6 +/- 
23.2 

112.4 +/- 
25.7 

143.3 +/-
19.2 

107.7 +/-
27.5 

105 +/- 
28.5 

76.2 +/- 
25.9 

112.1 +/- 
21.6 

le 92.8 +/-  
18.2 

110.1 +/-  
27.4 

136.2 +/-  
13 

115.5 +/-  
6.4 

130.6 +/-  
22.3 

135.1 +/-  
11.7 

135.2 +/- 
14.2 

median tr 
82.2 112.3 145.7 107.6 104.1 74.5 114.8 

le 
105.4 119.6 137.5 116.1 136.2 132.5 135.3 

max tr 
137.4 173.2 173.1 150.7 157.4 129.3 160.9 

le 
112.9 142.8 161.5 127.9 163.4 157 158.2 

min tr 
50.8 64.7 90.4 57.2 53.3 42 65.2 

le 
65.6 56.6 101.3 103.1 79.9 115.9 100.8 

comp tr 1 vs lev 
(****)  

2.5 vs lev 
(n.s.) 
(2.5 vs 1)  

5 vs lev 
(****) 
(5 vs 2.5) 
(5 vs 1) 

1 vs lev (n.s)  2.5 vs lev (*) 
2.5 vs 1 
(n.s.)  

5 vs lev 
(****) 
5 vs 2.5 
(****) 
5 vs 1(****) 

 

le 1 vs lev 
(****)  

2.5 vs lev 
(****) 
2.5 vs 1 
(****) 

5 vs lev (n.s.) 
5 vs 2.5 
(****) 
5 vs 1 (****) 

1 vs lev 
(****)  

2.5 vs lev 
(n.s.) 
2.5 vs 1 
(n.s.) 

5 vs lev (n.s.) 
5 vs 2.5 
(n.s.) 
5 vs 1 (n.s.) 

 

TMP 
angle [°] 

n tr 
72 124 135 44 133 80 208 

le 
45 82 143 18 126 58 248 

mean +/- 
sd 

tr 140.2 +/-
21.4 

131 +/- 
29.9 

142.6 +/-
22.6 

130.3 +/-
27.1 

129.7 +/-
25.8 

120.1 +/-
29.1 

141.6 +/- 
21.9 

le 111.4 +/-  
8.8 

111.1 +/-  
25.8 

95.9 +/-  
5.7 

129.4 +/-  
16.5 

98.9 +/-  
27.4 

91.8 +/-  
5.6 

99.9 +/- 
11 

median tr 
136 133.2 142.2 131.2 130.1 117.7 143.3 

le 
109.4 102.6 96.6 130.1 91.8 90.5 97.7 

max tr 
175.8 175.9 179.1 176 172.9 169 176.6 

le 
127.1 165.7 112.3 159.6 164.6 107.4 136.8 

min tr 
79.7 55.9 96.3 87.4 80.3 73.1 93.9 

le 
97.4 77.2 79.7 102 60.2 84.3 82.4 

comp tr 1 vs lev (n.s.)  2.5 vs lev 
(**) 

5 vs lev (n.s.) 
5 vs 2.5 (**) 

1 vs lev (*)  2.5 vs lev 
(****) 

5 vs lev 
(****) 
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2.5 vs 1 
(n.s.) 

5 vs 1 (n.s.) 2.5 vs 1 
(n.s.) 

5 vs 2.5 
(n.s.) 
5 vs 1 (n.s.)  

le 1 vs lev 
(****)  

2.5 vs lev 
(***) 
2.5 vs 1 
(n.s.) 

5 vs lev 
(***) 
5 vs 2.5 
(****) 
5 vs 1 (***) 

1 vs lev 
(****)  

2.5 vs lev 
(n.s.) 
2.5 vs 1 
(****) 

5 vs lev 
(****) 
5 vs 2.5 
(n.s.) 
5 vs 1 (****)  

 

n is the number of points used for multiple comparisons. Significance codes: ‘****’ (p < 0.0001); ‘***’ (p < 0.001); ‘**’ (p < 

0.01); ‘*’ (p < 0.05); n.s. (non-significant). tr: trailing limb, le: leading limb. TO: toe-off.  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 12, 2022. ; https://doi.org/10.1101/2022.01.11.475813doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.11.475813
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 6.  Mean, median, max, min values and multiple comparisons between hip cardan angles 

during level and step locomotion. For the trailing limb, analyses were performed at early stance (15% 

of the stance ± 4%). For the leading limb, around TD (TD ± 4%). 
  

leg step up step down level 
  

1 cm 2.5 cm 5 cm 1 cm 2.5 cm 5 cm 
 

Pro-Re 

() [°] 

n tr 

42 44 77 32 107 58 258  
le 

81 126 144 36 135 81 161  
mean 
+/- sd 

tr 
46.1 +/- 9 

48.6 +/- 
8.3 

62.1 +/-
11.5 

43.1 +/-
4.1 

45.8 +/-
8.4 

35.6 +/-
4.7 

41.4 +/- 
9.2  

le 37.3 +/- 
8.2 

41.6 +/- 
7.5 

37.9 +/- 
7.5 

44.4 +/- 
8.6 

51.9 +/- 
8.2 47.4 +/- 4 42.4 +/- 8  

median tr 
49.6 48.5 59 41.7 45.4 34.2 41.2  

le 
39.5 42.6 37.6 44.9 51.1 48.3 42.3  

max tr 
59.6 64 89.5 50.2 63.7 47 64.2  

le 
50.7 60.7 53.7 63.7 71.7 53.3 63.9  

min tr 
32 33.8 46 36.6 29.3 30 22.3  

le 
22.7 27.9 19.8 29.9 38.8 36.5 29.5  

comp tr 1 vs lev (**)  2.5 vs lev 
(****) 
2.5 vs 1(n.s.)  

5 vs lev 
(****) 
5 vs 2.5 
(****) 
5 vs 1 (****) 

1 vs lev (n.s.)  2.5 vs lev 
(***) 
2.5 vs 1(n.s.)  

5 vs lev 
(****) 
5 vs 2.5 
(****) 
5 vs 1 (***) 

 

 
le 1 vs lev 

(****)  
2.5 vs lev 
(n.s.) 
2.5 vs 1 
(***)  

5 vs lev 
(****) 
5 vs 2.5 
(***) 
5 vs 1 (n.s.) 

1 vs lev (n.s.)  2.5 vs lev 
(****) 
2.5 vs 1 **  

5 vs lev 
(****) 
5 vs 2.5 
(***) 
5 vs 1 (n.s.) 

 

Me-La 

() [°] 

n tr 

42 44 77 32 107 58 258  
le 

81 126 144 36 135 81 161  
mean 
+/- sd 

tr -3.8 +/-
4.2 

-2.2 +/- 
4.5 

4.5 +/- 
4.5 

-6.5 +/- 
4.9 

-2.1 +/- 
3.1 

-11.2 +/- 
2.5 

-6.3 +/- 
8.7  

le 
-7 +/-  4 

-7.9 +/-  
3.7 -9.3 +/-  5 

-8.5 +/-  
6.8 

2.9 +/-  
5.6 -1 +/-  6.3 

-15 +/- 
8.2  

median tr 
-3.5 -2.1 4.3 -5.8 -1.9 -11.1 -6  

le 
-6.7 -7.7 -7.7 -12.5 2 -2.1 -16.2  

max tr 
2.6 6.4 12.5 7.6 3 -6.4 13.1  

le 
0 0.8 1.1 2.8 17.9 9.2 7.4  

min tr 
-11.3 -8 -4.6 -14.9 -9.5 -15.8 -21.9  

le 
-12.6 -17.6 -23.8 -15.6 -7.3 -14 -29.2  

comp tr 1 vs lev (n.s.)  2.5 vs lev 
(****) 
2.5 vs 1(n.s.)  

5 vs lev 
(****) 
5 vs 2.5 
(****) 
5 vs 1 (****) 

1 vs lev (n.s.)  2.5 vs lev 
(****) 
2.5 vs 1(**)  

5 vs lev 
(****) 
5 vs 2.5 
(****) 
5 vs 1 (***) 

 

 
le 1 vs lev 

(****)  
2.5 vs lev 
(****) 
2.5 vs 1 ()  

5 vs lev 
(****) 
5 vs 2.5 
(n.s.) 
5 vs 1 (*) 

1 vs lev 
(****)  

2.5 vs lev 
(****) 
2.5 vs 1 
(****)  

5 vs lev 
(****) 
5 vs 2.5 
(***) 
5 vs 1 (***) 

 

Ab-Ad 

() [°] 

n tr 

42 44 77 32 107 58 258  
le 

81 126 144 36 135 81 161  
mean 
+/- sd 

tr 26.7 +/- 
3.1 

21.1 +/- 
5.4 20 +/- 5.7 

15.9 +/- 
4.8 

28.5 +/- 
6.6 

34.6 +/-
3.6 

28.8 +/- 
7.7  

le 25.3 +/-  
6 

29.9 +/-  
6.2 

24.6 +/-  
4.5 

22.9 +/-  
8.1 

34.5 +/-  
11.8 

34 +/-  
5.9 37 +/- 10  

median tr 
27.5 22 20.5 16.9 27.6 34.8 29.6  

le 
27.4 29.5 24.9 22.3 34.4 32.1 38.3  

max tr 
33.9 31.1 30.2 21.1 47.6 40.3 46.9  

le 
35.2 41.2 34.5 37.4 63.3 48.6 59  

min tr 
21.1 10.7 3.2 0.8 16.7 25.3 10.9 
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le 

15.8 12.9 12.2 10.3 3.9 25.3 12.3  
comp tr 1 vs lev (n.s.)  2.5 vs lev 

(****) 
2.5 vs 1 
(***) 

5 vs lev 
(****) 
5 vs 2.5 
(n.s.) 
5 vs 1 (****) 

1 vs lev 
(****)  

2.5 vs lev 
(n.s.) 
2.5 vs 
1(****)  

5 vs lev 
(****) 
5 vs 2.5 
(***) 
5 vs 1 (****) 

 

 
le 1 vs lev 

(****)  
2.5 vs lev 
(****) 
2.5 vs 1 
(****)  

5 vs lev 
(****) 
5 vs 2.5 
(****) 
5 vs 1 (n.s.) 

1 vs lev 
(****)  

2.5 vs lev 
(n.s.) 
2.5 vs 1 
(****)  

5 vs lev (**) 
5 vs 2.5 
(n.s.) 
5 vs 1 (***) 

 

n is the number of points used for multiple comparisons. Significance codes: ‘****’ (p < 0.0001); ‘***’ (p < 0.001); ‘**’ (p < 

0.01); ‘*’ (p < 0.05); n.s. (non-significant). tr: trailing limb, le: leading limb. TD: touch-down.  
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Table 7. Mean, median, max, min values and multiple comparisons between hip cardan angles during 

level and step locomotion. For the leading limb, analyses were performed at late stance (85% of the 

stance ± 4%). For the trailing limb, around TO (TO ± 4%). 
  

leg step up step down level 
  

1 cm 2.5 cm 5 cm 1 cm 2.5 cm 5 cm 

Pro-Re 

() [°] 

n tr 
72 130 135 45 135 81 195 

le 
41 61 99 11 113 54 261 

mean +/- 
sd 

tr 72.5 +/-
6.7 

69.2 +/-
9.9 

86.4 +/-
11.2 

67.9 +/- 
8.7 58 +/- 9 

52.2 +/-
10.5 

57.2 +/- 
7.2 

le 62.1 +/- 
8.5 

67.8 +/- 
8.8 

66.5 +/- 
4.5 

51.9 +/- 
10.9 

59 +/- 
12.6 

55.7 +/- 
3.1 

56.1 +/- 
8.9 

median tr 
74.8 71.3 87.4 68.2 58.4 53.3 56 

le 
60.4 66 66.7 47 56.3 54.9 54.5 

max tr 
81.3 82.6 108 81.5 76.6 80 84.2 

le 
90.2 85 75.6 75.4 101.4 65.7 85.1 

min tr 
52.7 41 59.1 47.6 36.9 32.2 42.9 

le 
49.8 52.8 51.9 46.4 41.2 50.2 34.8 

comp tr 1 vs lev 
(****)  

2.5 vs lev 
(****) 
2.5 vs 1(n.s.)  

5 vs lev 
(****) 
5 vs 2.5 
(****) 
5 vs 1 (****) 

1 vs lev 
(****)  

2.5 vs lev 
(n.s.) 
2.5 vs 1 
(****)  

5 vs lev 
(***) 
5 vs 2.5 
(***) 
5 vs 1 (****) 

 

le 1 vs lev 
(***)  

2.5 vs lev 
(****) 
2.5 vs 1 
(n.s.)  

5 vs lev 
(****) 
5 vs 2.5 
(n.s.) 
5 vs 1 (n.s.) 

1 vs lev (n.s.)  2.5 vs lev 
(n.s.) 
2.5 vs 1 
(n.s.)  

5 vs lev (n.s.) 
5 vs 2.5 
(n.s.) 
5 vs 1 (n.s.) 

 

Me-La 

() [°] 

n tr 
72 130 135 45 135 81 195 

le 
41 61 99 11 113 54 261 

mean +/- 
sd 

tr 4.7 +/- 
2.9 

4.6 +/- 
5.1 

9.4 +/- 
5.2 

12.2 +/- 
5.6 

2.9 +/- 
6.6 

7.5 +/- 
7.1 

10.9 +/- 
9.7 

le 4.9 +/-  
6.2 

4.9 +/-  
6.7 

3.4 +/-  
3.8 

-1.1 +/-  
1.3 

3.1 +/-  
7.4 

10.4 +/-  
2.4 7.6 +/- 10 

median tr 
5.2 4.8 10 10.6 4.7 9.7 12 

le 
4.7 5.5 3.2 -1.2 2.1 10.1 10.9 

max tr 
10.6 17.8 21.3 21.7 15.2 16.1 24.4 

le 
17.1 17.4 14.2 1.2 22.7 16.9 23.4 

min tr 
-2.4 -8.6 -7 2.1 -13 -17.4 -14.4 

le 
-3.8 -6.4 -4.7 -3.2 -13.1 7.2 -11.8 

comp tr 1 vs lev 
(****)  

2.5 vs lev 
(****) 
2.5 vs 1(n.s.)  

5 vs lev (n.s.) 
5 vs 2.5 
(****) 
5 vs 1 (****) 

1 vs lev (n.s.)  2.5 vs lev 
(****) 
2.5 vs 1 
(****)  

5 vs lev (**) 
5 vs 2.5 
(***) 
5 vs 1 (*) 

 

le 1 vs lev (n.s.)  2.5 vs lev (*) 
2.5 vs 1 
(n.s.)  

5 vs lev 
(****) 
5 vs 2.5 
(n.s.) 
5 vs 1 (n.s.) 

1 vs lev 
(****)  

2.5 vs lev 
(****) 
2.5 vs 1 
(n.s.)  

5 vs lev 
(***) 
5 vs 2.5 
(***) 
5 vs 1 (****) 

 

Ab-Ad 

() [°] 

n tr 
72 130 135 45 135 81 195 

le 
41 61 99 11 113 54 261 

mean +/- 
sd 

tr 22.1 +/- 
11.6 14 +/- 7.7 

9.8 +/- 
3.6 

14.4 +/- 
5.7 

17.4 +/- 
8.6 

15.7 +/- 
7.5 

18.2 +/- 
6.3 

le 17.3 +/-  
3.5 

20.1 +/-  
8.5 

15.2 +/-  
4.2 

12.5 +/-  
3.4 

20.9 +/-  
6 

19.9 +/-  
3.2 

21.2 +/- 
8.4 

median tr 
18.4 13 10.4 12.4 15.8 13.4 19.2 

le 
17.8 18.6 15.1 13.2 20.9 20.9 22.1 

max tr 
50 30.6 17.7 26.6 47.1 33.1 34.8 

le 
24 33.6 22.4 15.8 34 24.3 45.4 

min tr 
6.3 -2.5 -0.4 4.5 3.5 3.3 -0.5 

le 
13.2 -0.2 5.7 5.7 8.3 12.1 6 

comp tr 1 vs lev (*)  2.5 vs lev 
(****) 

5 vs lev 
(****) 

1 vs lev 
(****)  

2.5 vs lev 
(n.s.) 

5 vs lev (*) 
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2.5 vs 
1(****)  

5 vs 2.5 
(***) 
5 vs 1 (****) 

2.5 vs 1 (*)  5 vs 2.5 
(n.s.) 
5 vs 1 (n.s.) 

le 1 vs lev 
(****)  

2.5 vs lev 
(n.s.) 
2.5 vs 1 
(n.s.)  

5 vs lev 
(****) 
5 vs 2.5 
(***) 
5 vs 1 (n.s.) 

1 vs lev 
(****)  

2.5 vs lev 
(n.s.) 
2.5 vs 1 
(****)  

5 vs lev (n.s.) 
5 vs 2.5 
(n.s.) 
5 vs 1 (***) 

 

n is the number of points used for multiple comparisons. Significance codes: ‘****’ (p < 0.0001); ‘***’ (p < 0.001); ‘**’ (p < 

0.01); ‘*’ (p < 0.05); n.s. (non-significant). tr: trailing limb, le: leading limb. TO: toe-off.  
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Table 8. Mean, median, max, min values and multiple comparisons between pelvic pitch angles 

during level and step locomotion. For the trailing limb, analyses were performed at early stance (15% 

of the stance ± 4%) and around TO (TO ± 4%). For the leading limb, around TD (TD ± 4%). 

  
Pitch () 
[°] 

 
leg step up step down level 

 
1 cm 2.5 cm 5 cm 1 cm 2.5 cm 5 cm 

n 
tr 15% 42 45 78 32 107 58 123 

le TD 81 144 144 45 135 81 144 

tr TO 81 144 144 45 135 81 144 

mean 
+/- sd tr 15% 

-17.6 +/- 
6.1 

-17.6 +/- 
4.4 

-21.7 +/- 
6.7 

-12.6 +/- 
6.9 

-17 +/- 
6.1 

-6.4 +/- 
4.8 

-9.1 +/- 
7.8 

le TD 
-23.8 +/- 

2.7 
-22.5 +/- 

6.6 
-25.5 +/- 

6.4 
-14.4 +/- 

10.8 
-17.3 +/- 

6.9 
-9.3 +/- 

5.7 
-13.8 +/- 

6.8 

tr TO 
-21.3 +/- 

3.9 
-18.9 +/- 

4.6 
-22.9 +/- 

5.6 
-14.8 +/- 

9.8 
-16.7 +/- 

9.5 
-6.9 +/- 

3.3 
-10.7 +/- 

8.1 

median 
tr 15% -18.4 -16.5 -18.8 -8.7 -16.7 -5.5 -8.2 

le TD -23.4 -21.3 -25.6 -11.3 -16 -7.7 -12.5 

tr TO -20.9 -19.1 -21.7 -11.7 -15 -7.2 -9.4 

max 
tr 15% -5.6 -12.3 -13.3 -6.1 -4.5 1.2 0 

le TD -19 -9.2 -13 1.2 -2.6 -1.4 -3.2 

tr TO -16.4 -8.1 -11.4 1.2 -2.9 1.1 -0.3 

min 
tr 15% -25.6 -30.4 -35 -30.7 -32.9 -17 -33.8 

le TD -32.4 -38.3 -43.3 -32.1 -32 -22.4 -35.1 

tr TO -33.2 -29.9 -35.4 -32.7 -45.1 -12.8 -36.6 

comp 

tr 15% 

1 vs lev 
(****) 

 

2.5 vs lev 
(****) 
2.5 vs 1(n.s.) 

 

5 vs lev 
(****) 
5 vs 2.5 (*) 
5 vs 1 (*) 

1 vs lev (*) 

 
2.5 vs lev 
(****) 
2.5 vs 1 (*) 

 

5 vs lev (*) 
5 vs 2.5 
(****) 
5 vs 1 (***)  

le TD 

1 vs lev 
(****) 

 

2.5 vs lev 
(****) 
2.5 vs 1(n.s.) 

 

5 vs lev 
(****) 
5 vs 2.5 (**) 

5 vs 1 (n.s.) 

1 vs lev (n.s.) 

 
2.5 vs lev 
(**) 
2.5 vs 1 
(n.s.) 

 

5 vs lev (**) 
5 vs 2.5 
(****) 

5 vs 1 (**) 
 

tr TO 

1 vs lev 
(****) 

 

2.5 vs lev 
(****) 
2.5 vs 1 
(n.s.) 

 

5 vs lev 
(****) 
5 vs 2.5 
(****) 
5 vs 1 (n.s.) 

1 vs lev (*) 

 
2.5 vs lev 
(****) 
2.5 vs 1 (n.s) 

 

5 vs lev 
(****) 
5 vs 2.5 
(****) 
5 vs 1 (****)  

n is the number of points used for multiple comparisons. Significance codes: ‘****’ (p < 0.0001); ‘***’ (p < 0.001); ‘**’ (p < 

0.01); ‘*’ (p < 0.05); n.s. (non-significant). tr: trailing limb, le: leading limb. TD: touch-down, TO: toe-off. 
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Table 9. Mean, median, max, min values and multiple comparisons between pelvic roll angles during 

level and step locomotion. For the trailing limb, analyses were performed at early stance (15% of the 

stance ± 4%) and around TO (TO ± 4%). For the leading limb, around TD (TD ± 4%). 

  leg step up step down 

Level    1 cm 2.5 cm 5 cm 1 cm 2.5 cm 5 cm 

Roll () 
[°] 

n 
tr 15% 42 45 78 32 107 58 123 

le TD 81 144 144 45 135 81 144 

tr TO 81 144 144 45 135 81 144 

mean 
+/- sd tr 15% 

-1.3 +/- 
5.6 

-2.1 +/- 
4.1 

-5.3 +/- 
4.4 

0.6 +/- 
4.8 

-3.8 +/- 
4.4 

-1.9 +/- 
3.2 

-3.3 +/- 
10.7 

le TD 
5.5 +/- 

4.6 
4.9 +/- 

4.6 
-0.4 +/- 

4.8 
2.6 +/- 

5.1 9 +/- 2.9 
9.2 +/- 

3.2 
2.8 +/- 

9.7 

tr TO 
5.7 +/- 

4.4 
3.3 +/- 

3.9 
-0.5 +/- 

3.9 
2.1 +/- 

5.3 
8.4 +/- 

3.6 8.1 +/- 4 
1.9 +/- 

9.1 

median 
tr 15% -1.3 -1.8 -5.3 1 -4.5 -0.9 1.5 

le TD 6.2 5.2 0.3 4.4 9.6 10.1 4.4 

tr TO 6.6 2.9 0 4.1 8.6 9.4 5.1 

max 
tr 15% 6.2 5.4 4.6 6.3 6.4 2.8 11.6 

le TD 10.9 11.2 8.2 7.4 15.4 13.9 19.2 

tr TO 11 11.7 8.2 6.9 15.4 15.8 17.7 

min 
tr 15% -8.4 -8.3 -14.5 -8.3 -10 -10.1 -22.3 

le TD -6.9 -8.8 -12.8 -8.8 2.1 2 -16.5 

tr TO -8.4 -8.3 -14.5 -8.3 -10 -10.1 -22.3 

comp 

tr 15% 

1 vs lev 
(n.s.) 

 

2.5 vs lev 
(n.s.) 
2.5 vs 1(n.s.) 

 

5 vs lev (n.s.) 
5 vs 2.5 (**) 
5 vs 1 (****) 

1 vs lev (n.s.) 

 
2.5 vs lev 
(n.s.) 
2.5 vs 1 
(****) 

 

5 vs lev (n.s.) 
5 vs 2.5 
(n.s.) 

5 vs 1 (n.s.) 

 

le TD 

1 vs lev (*)  2.5 vs lev (*) 
2.5 vs 1(n.s.)  

5 vs lev (**) 
5 vs 2.5 
(****) 
5 vs 1 (****) 

1 vs lev (n.s.)  2.5 vs lev 
(****) 
2.5 vs 1 
(****)  

5 vs lev 
(****) 
5 vs 2.5 
(n.s.) 
5 vs 1 (****) 

 

tr TO 

1 vs lev 
(****)  

2.5 vs lev 
(n.s.) 
2.5 vs 1 
(***)  

5 vs lev (**) 
5 vs 2.5 
(****) 
5 vs 1 (****) 

1 vs lev (n.s.)  2.5 vs lev 
(****) 
2.5 vs 1 
(****)  

5 vs lev 
(****) 
5 vs 2.5 
(n.s.) 
5 vs 1 (****) 

 

n is the number of points used for multiple comparisons. Significance codes: ‘****’ (p < 0.0001); ‘***’ (p < 0.001); ‘**’ (p < 

0.01); ‘*’ (p < 0.05); n.s. (non-significant). tr: trailing limb, le: leading limb. TD: touch-down, TO: toe-off. 
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Table 10. Mean, median, max, min values and multiple comparisons between pelvic yaw angles 

during level and step locomotion. For the trailing limb, analyses were performed at early stance (15% 

of the stance ± 4%) and around TO (TO ± 4%). For the leading limb, around TD (TD ± 4%). 

  leg step up step down 

Level    1 cm 2.5 cm 5 cm 1 cm 2.5 cm 5 cm 

Yaw () 
[°] 

n 
tr 15% 42 45 78 32 107 58 123 

le TD 81 144 144 45 135 81 144 

tr TO 81 144 144 45 135 81 144 

mean 
+/- sd tr 15% 

0.7 +/- 
5.1 0.7 +/- 6 -4.9 +/- 4 

3.5 +/- 
3.6 

-2.4 +/- 
7.7 

-3.1 +/- 
4.1 1 +/- 5.3 

le TD 
0.6 +/- 

3.2 1.7 +/- 7 
0.6 +/- 

5.8 0 +/- 4.8 
8.7 +/- 

7.1 
7.9 +/- 

4.8 
-0.2 +/- 

3.7 

tr TO 
1.1 +/- 

3.5 1 +/- 5.4 
-0.8 +/- 

5.8 
0.2 +/- 

3.4 
8.2 +/- 

7.8 6.7 +/- 5 
-0.2 +/- 

5.1 

median 
tr 15% 2.9 2.1 -5.3 4.1 -2.6 -3.1 0.6 

le TD -0.1 2.7 0 1.7 7.6 8 -0.8 

tr TO 0.2 1.2 -0.3 0.2 9.1 7.9 0.6 

max 
tr 15% 7.6 7.6 5.2 12.6 15.4 4 15.1 

le TD 6.8 16.2 13.3 6.5 22.8 15.6 7.5 

tr TO 8.1 15.3 10.3 4.3 22.8 14.3 10.5 

min 
tr 15% -10 -11.3 -12.3 -3.8 -23.7 -11.4 -9.4 

le TD -3.9 -10.2 -14.3 -12.1 -4.1 -1.3 -5.8 

tr TO -4.7 -10.3 -15.6 -10 -5.6 -3.8 -12 

comp 

tr 15% 

1 vs lev 
(n.s.) 

 

2.5 vs lev 
(n.s.) 
2.5 vs 1(n.s.) 

 

5 vs lev 
(****) 
5 vs 2.5 
(****) 
5 vs 1 (****) 

1 vs lev (*) 

 
2.5 vs lev 
(***) 
2.5 vs 1 
(****) 

 

5 vs lev 
(****) 
5 vs 2.5 (n.s.) 
5 vs 1 (****) 

 

le TD 

1 vs lev 
(n.s.)  

2.5 vs lev (*) 
2.5 vs 1(n.s.)  

5 vs lev (n.s.) 
5 vs 2.5 (n.s.) 
5 vs 1 (n.s.) 

1 vs lev (n.s.)  2.5 vs lev 
(****) 
2.5 vs 1 
(****)  

5 vs lev 
(****) 
5 vs 2.5 (n.s.) 
5 vs 1 (****) 

 

tr TO 

1 vs lev (*)  2.5 vs lev (*) 
2.5 vs 1 (n.s.)  

5 vs lev (n.s.) 
5 vs 2.5 (n.s.) 
5 vs 1 (n.s) 

1 vs lev (n.s.)  2.5 vs lev 
(****) 
2.5 vs 1 
(****)  

5 vs lev 
(****) 
5 vs 2.5 (n.s.) 
5 vs 1 (****) 

 

n is the number of points used for multiple comparisons. Significance codes: ‘****’ (p < 0.0001); ‘***’ (p < 0.001); ‘**’ (p < 

0.01); ‘*’ (p < 0.05); n.s. (non-significant). tr: trailing limb, le: leading limb. TD: touch-down, TO: toe-off. 
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Table 11.  Animals and strides 

Individual Weight [g] Strides 

  1cm up 2.5 cm 
up 

5 cm up 1cm 
down 

2.5 cm 
down 

5 cm 
down 

Schwarz 341  1 5 1 5 2 

Rot 284  3 4  4 1 

Silber 295 1 5 2 2 2  

Dunkelgrün 337 4 2 3 2 1 3 

Hellgrün 277  3     

Lila 362 1      

Rosa 342       

Orange 295   2    

Gelb 307 3 2   4 3 
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