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Abstract. Automated road condition estimation is a crucial basis for Advanced
Driver Assistance Systems (ADAS) and even more for highly and fully automated
driving functions in future. In order to improve vehicle safety relevant vehicle
dynamics parameters, e.g. last-point-to-brake (LPB), last-point-to-steer (LPS), or
vehicle curve speed should be adapted depending on the current weather-related
road surface conditions. As vision-based systems are already integrated in many
of today’s vehicles they constitute a beneficial resource for such a task. As a
first contribution, we present a novel approach for reflection modeling which is
a reliable and robust indicator for wet road surface conditions. We then extend
our method by texture description features since local structures enable for the
distinction of snow-covered and bare road surfaces. Based on a large real-life
dataset we evaluate the performance of our approach and achieve results which
clearly outperform other established vision-based methods while ensuring real-
time capability.

1 Introduction

The continuous improvement of road safety is an important field of research and de-
velopment in the automotive industry. Considerable efforts have been made to reduce
the number of road fatalities, damages and the consequences of accidents, e.g. by au-
tomated emergency brake systems [10], road detection for lane departure warning [2],
or vulnerability prediction [18]. Advanced Driver Assistance Systems (ADAS) which
warn and support the driver in normal driving and especially in hazard situations form
an important contribution towards ”vision zero” [6]. As for example to assess a critical
driving situation properly the understanding of the present road condition is of vital
importance. Nowadays, this information is determined manually by the driver but is
intended to be estimated automatically to serve as input for higher automated vehicle
safety systems. Based on this valuable information the effectiveness of current assis-
tance systems can be increased considerably, e.g. by adapting system thresholds such
as last-point-to-brake (LPB) for automated emergency brake systems. Furthermore, it
is desired to obtain the current road condition automatically for the purpose of highly
and fully automated driving in the future.

Recent advances in road condition estimation based on on-board surrounding sen-
sors, as for example rain, humidity, or laser sensors, have proven to be the key element
for the task at hand. Another potential resource are visual sensors which have the ad-
vantage of being already integrated in many of today’s vehicles. Additionally, cameras
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allow for hazard prediction as they asses the area directly in front of the moving vehi-
cle. Thereby, the most difficult task is the recognition of wet and icy areas, being some
of the most dangerous situations. By using stereo vision systems this challenge can be
addressed by utilizing polarization filters [7] to obtain information about the presence
of reflections as a typical indicator for those conditions. However, since the market pen-
etration of stereo camera systems is very low compared to mono camera systems, road
condition estimation has to be performed on monocular image data which renders the
task very challenging.

In this paper, our goal is to overcome limitations of road condition estimation based
on single cameras in order to distinguish between dry, wet and snow-covered road
surface conditions. In particular, we apply enhanced spatio-temporal reflection models
combined with strong texture description features. Furthermore, our proposed method
is very robust to occurring disturbances and achieves real-time capability.

In Sect. 2 we give an overview of related work and motivate our approach. Sect. 3
presents our novel method in detail based on previously introduced standard techniques
for reflection modeling. In Sect. 4 the actual road condition estimation framework is
explained which is currently implemented in a first demonstration vehicle. A compre-
hensive evaluation on a large real-life dataset is finally presented in Sect. 5.

2 Related Work

In the past decades several approaches have been developed for the challenging task of
road condition estimation. There are mainly two approaches to provide weather-related
information for individual vehicles. On the first hand, so-called road side units [16]
collect data in a specific region by a variety of sensors. Afterwards, these statistics
are processed and distributed to individual vehicles as presented in [13]. On the other
hand, this network can be supported by each particular vehicle as well by utilizing on-
board surrounding sensors for rain [8], air humidity [21], acoustics [1, 12], and surface
roughness [5].

In the area of pure computer vision, the most challenging task is to detect wet road
surface conditions. Usually, this problem can be addressed by using a stereo camera
setup utilized with polarization filters [7]. To be able to distinguish between dry, wet
and snowy conditions, polarization characteristics are combined with additional image
feature types like gray level co-occurrence matrices [17, 24] or wavelet packet trans-
forms [25].

However, in the absence of a stereo camera system, as it is commonly the case for
most of the today’s vehicles, more elaborate features based on single cameras have to
be developed. As for example in [19, 20] sole texture description followed by a di-
mensionality reduction technique is applied for stationary road condition estimation.
Examples for on-board systems are presented in [9, 22] where texture characterization
based on gray level co-occurrence matrices is the key element. In the work of [9] tex-
ture description is extended by additional block-wise RGB ratios to obtain color and
luminance features. Another interesting method presented in [15] applies block-wise
RGB histograms combined with edge histograms considering the entire lower image
region in order to cover additional information.



Road Condition Estimation based on Spatio-Temporal Reflection Models 3

In the case of monocular image analysis it is still difficult to detect wet areas due to
the high variability of the appearance of those regions caused by mirrored environmen-
tal objects. To overcome these difficulties certain road conditions can be determined by
modeling different reflection types based on spatio-temporal information, i.e. taking an
image sequence into account. In the course of this, typical reflections for wet situations,
namely specular reflections, are modeled by investigating appearance variations of in-
dividual road surface regions as presented in [23]. The major drawback of this approach
is the required time-consuming registration of individual regions which is also prone to
unregistered movements of the vehicle.

Therefore, in this work we present a novel approach to model reflection types by
not considering individual regions directly but by evaluating the paths those regions
pass. By assuming an almost linear motion of the vehicle together with an appropriate
image transformation, considered regions will pass the scene through individual image
columns which then provide all relevant information of potential appearance changes.
This enables us to avoid expensive and unstable registration techniques in contrast to
other works. We then combine our novel reflection features with strong texture descrip-
tion to obtain a robust and fast approach for the challenging task of road condition
estimation.

3 Fast and Robust Reflection Modeling

The most difficult part of road condition estimation is the recognition of wet areas on
the road surface. Due to the high variability of the appearance of wet regions particu-
larly caused by unpredictable mirrored environmental objects, features such as texture
description, color information, statistical moments, etc. turned out to be not very dis-
criminative. However, exactly those mirrored objects are considered as key elements
for wet surface recognition in our paper. The main issue is to not only consider one
single frame but to evaluate a sequence of consecutive images. With the help of this
spatio-temporal modeling the nature of different reflection types can be revealed. This
allows for the recognition of wet surfaces in a very general way. Thus, in the following
sections different reflection types together with their properties are introduced in detail.
Afterwards, a basic approach for the detection of a specific reflection type indicating
wet conditions–namely specular reflections–is presented. Motivated by serious short-
comings of this basic technique a novel method for the recognition of reflection types
is introduced in Subsect. 3.3.

3.1 Diffuse and Specular Reflections

As mentioned above our main assumption is that identifying surface reflection types
allows for the distinction between the underlying road condition. In Fig. 1 (a) and (b)
the difference between diffuse and specular reflections is depicted. In the case of dry
asphalt as well as snow coverage fine-grained structures on the surface reflect incident
light in all directions equally. Thus, a change of the perspective would lead to the same
visual appearance of the focused region. In contrast, a surface covered by water is very
smooth which has the properties of a mirror and thus the incident light is theoretically
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(a) diffuse reflection (b) specular reflection

Fig. 1. Scheme of different reflection types. In
(a) diffuse reflection is shown where the inci-
dent light is equally scattered in all directions.
A change of the viewpoint has no visual effect
on the observed surface point. In (b) a specular
reflection is depicted and the reflected light is fo-
cused into one single direction. An altered per-
spective would lead to an appearance shift of the
observed surface, since the particular reflected
ray would no longer meet the camera.
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Fig. 2. Schematic representation of recov-
ering individual regions on the road in con-
secutive frames based on the one-track-
model.

reflected in exactly one direction. If the perspective changes, this reflection will no
longer encounter the observer’s view and the region seems to change its appearance.

To decide about the presence of specular reflections and thus the occurrence of wet
road conditions, potential appearance changes of individual regions have to be evalu-
ated. This can be realized by comparing identical regions on the road between several
consecutive frames. In the following section a basic method is presented which allows
for the examination of particular regions with respect to the presence of specular reflec-
tions given a sequence of images.

3.2 Physical Model

To decide about the present reflection type it is required to evaluate the change of ap-
pearance of individual regions on the surface along consecutive frames. Therefore, cor-
responding pixel values of those regions have to be considered. To be able to align such
regions over different frames it is beneficial to project the original image into a top
view image based on an estimated homography. Hence, potential transformations are
reduced to simple translation and rotation. To obtain the geometric transition between
two consecutive frames vehicle dynamics parameters have to be taken into account.
Those parameters–available from the vehicle’s system–provide the current steering an-
gle as well as the actual velocity and thus the distance traveled during two acquired
images. In Fig. 2 the geometric relationship between two frames is shown exemplarily.
As can be seen an individual point (x′, y′) placed in the top view image of frame f ′ can
be recovered as (x′′, y′′) in the subsequent frame f ′′. The corresponding transformation
between these points can be expressed in general by

x′′ = (x′ + SR) · cos
(
∆C

SR

)
+ (y′ +D) · sin

(
∆C

SR

)
− SR

y′′ = −(x′ + SR) · sin
(
∆C

SR

)
+ (y′ +D) · cos

(
∆C

SR

)
−D, (1)
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where SR is the pole distance, ∆C is the distance traveled, and D is the offset between
rear axle and the region of interest. Additionally, the pole distance can be obtained by
SR = L

tan(β) where L denotes the distance between rear and front axle. However, β
increases proportionally with the current steering angle for which the relationship has
to be estimated in advance. As can be seen δ = ∆C

SR
is basically the angle of the rotation

matrix for the required image transformation.
Once all frames are registered and related regions are aligned the evaluation of

potential appearance changes can be applied. The most intuitive way is to determine
the gray value variances of corresponding pixels along the time axis which can be en-
hanced by considering grid cells instead of single pixels to avoid misalignments caused
by small transformation errors. The result of this procedure is an image containing the
variance over time at each pixel location and thus an indication of the present reflection
type. However, under real world conditions, serious problems arise due to the technical
setup as well as the simple assumptions. At first, erroneous transformations between
two frames can be obtained due to the fixed homography in combination with common
vertical movements of the car. Those errors increase drastically for regions which are
far away from the observer. In order to rectify the biased transformation it is possible to
adapt the homography for each frame individually based on ground-plane estimation.
However, the estimation over several frames leads to cumulative errors in terms of sub-
pixel accuracy caused by the coarse discrete scale of the vehicle dynamics parameters,
e.g. the steering angle. To resolve these problems, in the following, we propose a novel
fast and robust reflection modeling approach which can easily deal with inaccurate mo-
tion estimation.

3.3 A Novel Approach: Specular Reflection Maps

The idea we suggest in our paper is to evaluate paths of individual regions instead of
regions themselves. This approach allows for accurate detections of different reflection
types even during severe unregistered movements of the car. Note, that the following
method is based on the introduced top view transformation (cf. Subsect. 3.2).

Let us assume an almost linear motion of the vehicle. Then, an individual point
on the surface will pass the region of interest through a single image column of the
transformed top view image. Hence, potential appearance variations can be detected
not by tracking the region directly but by assessing the path of the region, i.e. the same
image column of consecutive frames. To obtain one image including those temporal
information an average image It is computed by

It = α · It−1 + (1− α) · It. (2)

To be able to emphasize recent events we make use of the moving average controlled by
the parameter α. Furthermore, only one single image has to be kept in memory which is
of great benefit regarding embedded systems. By subtracting the column average from
each point of the average image It reflection types can be distinguished by the resulting
specular reflection map given by

SRMt(x, y) = It(x, y)−
1

K

K∑
k=0

(
It(x, k)

)
. (3)
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(a) Original image (b) It (c) It (d) SRMt

Fig. 3. Examples for reflection modeling based on specular reflection maps. The first row shows
an example taken from a dry road. In the second row an instance of a wet road is presented. The
pipeline for reflection detection is depicted for an image (a) which was transformed into a top
view (b). The averaged frame (c) is computed based on previous frames which results finally in
the corresponding refection map (d).

The idea is that diffuse reflections, i.e. without appearance variations, have similar val-
ues along the corresponding image column in It. Thus, subtracting the column average
leads to small values for most of the surface points. In contrast, specular reflections
provide severe appearance changes and the related image column of It yields high vari-
ance resulting in high values for SRMt. In Fig. 3 the different stages of our approach can
be seen for two examples showing dry and wet asphalt. The resulting reflection maps
clearly show the indication for the described reflection types and in consequence the
different road conditions.

To finally obtain features based on the computed specular reflection map (SRMt)
several methods can be applied. As presented later (cf. Subsect. 4.2) we use texture de-
scription based on Local Binary Patterns (LBPs) [14] in order to extract discriminative
features for dry and wet road conditions.

The major advantage of our proposed method is that no expensive tracking of indi-
vidual regions or an image registration technique is required. Furthermore, our method
only needs to compute simple image averages and subsequent subtractions. Hence, re-
sults can be computed very efficiently while being robust against unregistered move-
ments in contrast to the physical model described in Subsect. 3.2.

4 Road Condition Estimation Framework

Since the main goal of this work is to estimate the actual road condition, a common
classification framework is utilized. The processing pipeline consists of three stages,
namely the selection of a region of interest, the extraction of appropriate features, and
finally the classification into road condition classes. In the following each of these es-
sential steps is explained in detail.
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4.1 Region of Interest

To obtain suitable feature vectors, describing a specific image region, the shape and
size of this region has to be defined in advance. In [2] it was shown that road-only
parts can be determined optimally by semantic segmentation. For our method, however,
the region is limited to a simple and static geometric shape since we focus on feature
extraction as well as the classification process. As already mentioned in Sect. 3, a fa-
vorable shape of this region would be a trapezoidal one, since the required rectangular
top view image can be obtained based on an estimated homography. In our setup the
homography is assumed to be fixed, although the ground-plane changes due to small
vertical movements of the car.

4.2 Feature Extraction

Once the region of interest is defined, features can be obtained from the covered area
to describe the underlying road condition. Several feature types have been investigated
during the past and we found two very crucial feature types for the task at hand. In
the first place, the novel specular reflection maps introduced in Sect. 3.3 which aim to
detect specular reflections are an essential resource to distinguish between dry and wet
road conditions. Secondly, texture features have proven to be most suitable to describe
characteristic structures caused by wheel tracks on wet asphalt or on snow-covered
roads.

Specular Reflection Maps Based on a quantitative analysis–which is not presented
in this paper due to the limited space–we found that texture description methods are
most suitable to cover meaningful information provided by the specular reflection map.
Thereby, unique patterns induced by the presence of wet areas can be recognized in a
very robust manner. As shown in the next paragraph LBPs are a prominent approach
for the task of texture description. For our scenario of reflection maps it is superior in
terms of accuracy to other state-of-the-art approaches such as GLCMs [4]. Addition-
ally, those descriptors can be computed very efficiently which is a crucial factor when
implemented on embedded systems.

Texture Description Since sole reflection modeling is not sufficient to distinguish be-
tween dry and snow-covered areas, texture description on the original image became the
second key element. Here, characteristic structures on the lane provide useful informa-
tion about the present road condition. As already mentioned in the previous paragraph
LBPs have proven to be the most suitable texture description approach for the task at
hand. The reasons for that are twofold: On the one hand, LBPs can be computed very
efficiently which is as beneficial as crucial while running on an embedded environment.
On the other hand, it is highly discriminative in contrast to other fast texture recogni-
tion methods. As we are interested in the texture of the actual road surface, a cropped
version of the original image is transformed into a top view image (cf. Sect. 3). We
limit ourselves to the intensity channel of the HSI image representation, since color
information is prone to color shifts (e.g. different colored windshields).
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4.3 Classification
The final step in our framework is the classification into road condition classes, namely
dry, wet, and snow-covered. We have decided for Extremely Randomized Trees [3] as
a prominent non-linear classifier for two reasons. On the one hand, the implementation
is highly memory efficient in contrast to comparable methods like Nearest-Neighbor
classifier. Only some simple thresholds have to be kept in memory instead of entire
highly dimensional feature vectors of some or even all training samples. On the other
hand, the computation time during classification is very low based on only few and
simple numerical comparisons. Both advantages make Extremely Randomized Trees
highly preferable for our task.

5 Experiments

In the following, we present evaluations of our proposed method which are based on a
huge real-life data collection acquired over the past 18 months. The dataset comprises
a variety of environmental settings such as motorways as well as urban and suburban
scenes at different locations from all over Germany as well as from Sweden. We use a
total of ∼ 3, 500 sequences resulting in ∼ 150, 000 single images each with a resolution
of 1076×648 pixels at a frame rate of 16 fps. Ground-truth data was provided for all se-
quences by an human expert during the acquisition including the unique labels dry, wet,
and snow-covered. Additionally, intermediate labels are assigned to sequences which
show mixed conditions and transition between unique classes which are not considered
for this evaluation. The overall distribution of class labels is given by 60% showing dry,
14% showing wet, and 26% showing snow-covered conditions. Example images for
each road condition class can be seen in Fig. 4. For the evaluation we conduct a 10-fold
cross validation where only 10% of the data was used for training and the remaining
90% for testing. Overall and average recognition rates were used in order to measure the
classification performance sample-wise as well as in a class-wise manner. We compare
our proposed method to state-of-the-art techniques and provide a simple baseline ap-
proach developed during a preliminary study of this work. It is shown that our method
outperforms all other methods despite of challenges, e.g. color shifts, under- and over-
exposed images, severe reflections due to low sun, and even image artifacts caused by
erroneous demosaicing [11]. In the course of a parameter evaluation–which is not pre-
sented in this paper due to the limited space–we found the most suitable setting given
by α = 0.05, P = 8, R = 1, 2, 4. Thereby, an increasing value of α would lead to
erroneous estimations caused by short-term disturbances whereas smaller values would
cause a delayed recognition of an actual change of the road condition. As presented
in [14] the number of neighbors is set to P = 8 to ensure an efficient implementation
by using an 8-bit data type. The corresponding radius R has been set to different dis-
tances to obtain a pyramidal representation. As suggested in [3] an ensemble size of
100 trees was selected for the classification.

5.1 Evaluation and Comparison
Since there is no commonly used dataset for the task of road condition estimation and
sources of other methods are not publicly available, works of [9, 15, 22] have been



Road Condition Estimation based on Spatio-Temporal Reflection Models 9

Table 1. Comparison of various camera based methods for road condition estimation.

METHOD DRY WET SNOW ARR ORR

Baseline 82.71 75.22 64.24 74.06 77.33

Kawai et al. [9] 42.03 52.56 79.25 57.95 55.55
Sun et al. [22] 70.23 91.31 76.35 79.30 74.95
Omer et al. [15] 96.85 79.89 95.49 90.74 94.25

Ours 98.90 93.17 94.93 95.67 96.84
Ours + context 99.44 93.50 97.84 96.79 98.09

reimplemented. This allows us to compare the performance of our proposed method
with recent works in this field of research. Additionally, we present results produced by
a baseline approach developed during a preliminary study.

In Table 1 the recognition rates for our approach as well as for works of [9, 15, 22]
are presented. As can be seen our method is superior regarding each condition class
which results in a substantial increase of overall and average performances. The system
of [22] which is solely based on GLCM texture modeling is capable of detecting wet
conditions, but shows poor results for dry and snow-covered scenes. Our implementa-
tion of [9] provides rather poor results for all classes and has the additional disadvantage
of high computational costs, i.e. 12 seconds per frame, which renders the method use-
less for real-time applications. In contrast to that, [15] provides high recognition rates
for snow-covered and bare roads for which the method was initially designed. This
strength can be explained by the fact, that they use context information from non-road
parts by considering the entire lower image region. Additionally, the usage of color
information is very useful as long as the setup does not change, e.g. by differently col-
ored windshields or unexpected illumination changes. Although our method produces
slightly worse results for snow-coverage compared to [15], it was possible to obtain
superior overall as well as average recognition rates while still considering only-road
parts without using color information. As a further improvement of our approach, the
entire lower image region was considered to cover useful information about saturation
and intensity variations between road and non-road parts. The idea is that snow-covered
areas yield low variances in the saturation channel whereas bare road scenes show high
variances caused by road-markings and grass verges. The resulting performance gain
can be seen in the last row of Table 1.

The major advantages of our proposed approach is the ability to distinguish between
all potential road conditions in a very robust manner without the sensitivity to color and
illumination changes. Furthermore, the actual runtime, e.g. at least 16 fps, renders our
method suitable for real-time applications. In Fig. 4 qualitative results are presented for
each road surface condition class showing the advantages of our method.

Limitations of our approach appear when driving through narrow bends as the
method assumes an almost linear motion. This drawback can be resolved by an adapta-
tion of the static homography in terms of aligning the top view image in the direction
of motion. Furthermore, disturbances on the windshield, e.g. contamination and reflec-
tions caused by the car’s hood can result in erroneous estimations. In addition, varying
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Fig. 4. Qualitative evaluation of our approach compared to Kawai et al. [9], Sun et al. [22], and
Omer et al. [15]. Results are highlighted below each image (best viewed in color).

exposure times of the camera can lead to changing appearance of individual regions
which can be rectified by taking the corresponding value into account.

5.2 Computation Times

The presented road condition estimation framework was solely implemented in C/C++
using the OpenCV library 2.4.9. Similar to the computer setup of the demonstration
vehicle an Intel R© CoreTM i7-2600 standard desktop computer @3.40 GHz was used for
our experiments. The computation time for one single frame was approximately 50 ms
which guarantees real-time capability of our approach, i.e. 16 frames per second.

6 Conclusions

In this paper we presented a fast and robust approach for the task of road condition
estimation based on a monocular camera. Motivated by a physical reflection model a
transformation of the input image into a reflection map was proposed. Feature vectors
were obtained by the extraction of texture features based on the reflection map as well
as on the original image. Afterwards, a standard classifier was applied which meets the
special requirements of embedded systems. Based on a large and challenging dataset it
was possible to show that the proposed method clearly outperforms other vision-based
state-of-the-art methods. The main advantages of our approach are the capability of
running in real-time as well as the robustness against diverse disturbances in contrast to
standard reflection modeling based on image registration and tracking.
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search project funded by Continental Teves AG & Co. oHG.
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